\(\widehat{N}\)=60 độ. Tia phân giác \(\widehat{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

A B C K I 1 2 1 2 3 4

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=110^o\)

\(\hept{\begin{cases}\widehat{B_2}=\frac{1}{2}\widehat{B}\\\widehat{C_1}=\frac{1}{2}\widehat{C}\end{cases}\Rightarrow\widehat{B_2}+\widehat{C_1}=\frac{1}{2}.110^o=55^o\Rightarrow\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_1}\right)=125^o}\)

Ta có: \(\widehat{C_2}+\widehat{C_3}+\widehat{C_1}+\widehat{C_4}=180^o\)

\(\hept{\begin{cases}\widehat{C_1}=\widehat{C_2}\\\widehat{C_3}=\widehat{C_4}\end{cases}\Rightarrow\widehat{C_2}+\widehat{C_3}=\frac{180^o}{2}=90^o\Rightarrow\widehat{ICK}=90^o}\)

Suy ra \(\widehat{BIC}=\widehat{ICK}+\widehat{BKC}\Rightarrow\widehat{BKC}=125^o-90^o=35^o\)

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Lời giải:

Từ $I$ kẻ $IK, IL$ lần lượt vuông góc với $AB,AC$

Vì $I$ là giao điểm của hai tia phân giác $AD$ và $CE$ nên đồng thời $I$ cũng nằm trên tia phân giác của góc $ABC$

Do đó khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$

\(\Leftrightarrow IK=IL\)

Lại có:

\(\angle IEK=\angle CEA=180^0-\angle EAC-\angle ACE=180^0-\angle BAC-\frac{\angle ACB}{2}\)

\(\angle IDL=\angle ADB=\angle DAC+\angle DCA=\frac{\angle BAC}{2}+\angle ACB\)

\(\Rightarrow \angle IEK-\angle IDL=180^0-\frac{3}{2}(\angle BAC+\angle ACB)\)

\(=180^0-\frac{3}{2}(180^0-60^0)=0\)

\(\Rightarrow \angle IEK=\angle IDL\)

Xét tam giác $IEK$ và tam giác $IDL$ có:

\(\left\{\begin{matrix} \angle IEK=\angle IDL\\ \angle IKE=\angle ILD=90^0\\ \end{matrix}\right.\Rightarrow \triangle IEK\sim \triangle IDL\)

\(\Rightarrow \frac{IE}{ID}=\frac{IK}{IL}=1\Rightarrow IE=ID\)