Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:
\(MD\cdot MN=MH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:
\(ME\cdot MP=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)
Tham khảo
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-tren-canh-bc-lay-diem-d-sao-cho-abc-cad-k-la-duong-tron-noi-tiep-tam-giac-adc-e-la-chan-duong-p.205346682394
Có vẻ bài này hơi không phù hợp với học sinh lớp 9. Đầu tiên ta sẽ phải sử dụng định lý sin cho tam giác: Trong tam giác ABC với bán kính đường tròn ngoại tiếp R thì tỷ số giữa cạnh và sin góc đối diện bằng 2R. Nhận xét tiếp theo: Diện tích tam giác bất kỳ một nửa tích độ dài hai cạnh nhân với sin của góc xen giữa hai cạnh đó.
Ta có \(S\left(ABC\right)=S\left(ABF\right)+S\left(ACF\right)=\frac{1}{2}AB\cdot AF\cdot\sin BAF+\frac{1}{2}AC\cdot AF\cdot\sin CAF\)
\(=\frac{1}{2}AB\cdot\frac{CD}{2R}\cdot AF+\frac{1}{2}AC\cdot AF\cdot\frac{BD}{2R}=\frac{AF}{4R}\left(AB\cdot CD+AC\cdot BD\right).\) Do tứ giác ABDC nội tiếp nên theo định lý Ptoleme ta có \(AB\cdot CD+AC\cdot BD=AD\cdot BC.\) LSuy ra \(S\left(ABC\right)=\frac{AF\cdot AD\cdot BC}{4R}.\)
Tiếp theo ta có \(S\left(AMDN\right)=S\left(AMD\right)+S\left(ADN\right)=\frac{1}{2}AM\cdot AD\cdot\sin BAD+\frac{1}{2}AD\cdot AN\cdot\sin DAC\)
\(=\frac{1}{2}AF\cdot\cos DAC\cdot AD\cdot\sin BAD+\frac{1}{2}AD\cdot AF\cdot\cos BAD\cdot\sin DAC\)
\(=\frac{1}{2}AF\cdot AD\cdot\left(\cos DAC\cdot\sin BAD+\sin DAC\cdot\cos BAD\right)=\frac{1}{2}\cdot AF\cdot AD\sin\left(DAC+BAD\right)\)
\(=\frac{1}{2}AF\cdot AD\cdot\sin BAC=\frac{1}{2}AF\cdot AD\cdot\frac{BC}{2R}=\frac{AF\cdot AD\cdot BC}{4R}.\)
Ở đây ta sử dụng công thức hình chiếu \(\sin\left(a+b\right)=\sin a\cos b+\cos a\sin b.\)
Vậy ta có tứ giác AMDN và tam giác ABC cùng diện tích.
Karin Korano
câu hỏi này của lớp 11 nhé !
1 cách trình bày khác; ngắn gọn hơn nha Thầy Giáo Toán
đặt ^BAE=^CAE=α; EAF=β
Ta có S∆ABC =1/2.AB.AF.sin(α+β)+1/2 .AC.AF sin α =AF/4R (AB.CD+AC.BD)
(R-là bán kính đường tròn ngoại tiếp tam giác ABC) (1)
Diện tích tứ giác ADMN là
SADMN =1/2.AM.AD.sin α +1/2AD.AN.sin(α+β) = 1/2.AD.AF.sin(2α +β) =AF/4R.AD.BC (2)
Vì tứ giác ABDC nội tiếp trong đường tròn nên theo định lí Ptoleme ta có
: AB.CD + AC.BD = AD.BC (3).
Từ (1), (2), (3) ta có điều phải chứng minh
a: Xét tứ giác BMDH có
gócc BMD+góc BHD=180 độ
=>BMDH là tứ giác nội tiếp
b: góc AMN+góc OAM
=góc ADN+(180 độ-góc AOB)/2
=90 độ-góc HAC+90 độ-góc AOB/2
=180 độ-(90 độ-góc ACB)-góc ACB
=90 độ
=>MN vuông góc AO
=>MN//tiếp tuyến tại A của (O)
Mình không vẽ được hình và không viết được kí hiệu góc mong bạn thông cảm
Gọi H là giao điểm của MD và NP
Tứ giác MNAB nội tiếp
=> ABP=MNH
Mà ABP=MBK (hai góc đối đỉnh)
=> MBK=MNH(1)
Ta có DMK=NMP
=>NMH=BMK(2)
Từ (1) và (2)
=> tam giác MBK đồng dạng tam giác MNH
=> MKB=MHN
Mà MHN+MHP=180
MHP=MDE
=> MKB+MDE=180
=> MKE+MDE=180
=> tứ giác MDEK nội tiếp
Vậy tứ giác MDEK nội tiếp
HAY