Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDMP vuông tại D và ΔENP vuông tại E có
góc P chung
=>ΔDMP đồng dạng với ΔENP
b: ΔDMP đồng dạng với ΔENP
=>PE/PD=MP/NP=MD/NE
=>PE/6=18/12=3/2
=>PE=9cm
Hình tự vẽ dc ko ạ =(((( mik vẽ r nhưng lại bị out ra =.= lười lắm ạ
A/ xét tg AEHF ta có : HE vuông góc AB, FA vuông góc AB, HE//AC (gt)
=> góc AEH = góc EAF = góc AFH = 90 độ
=> Tứ giác AEHF là HCN
=>AH=EF
B/ Ta có H đối xứng M qua E => ME=EH
mak EH= AF (hcn) => ME=À
Ta có H đối xứng vs N qua F => FH=FN
mak FH =EA (hcn) => FN=EA
Xét tứ giác MEFA có :
+ ME=AF
+ ME//AF( slt)
=>Tứ giác MEFA là hình bình hành
=>EF=MA,EF//MA (1)
Xét tứ giác EFAN có :
+ FN = EA
+ AE//FN (slt)
=>Tứ giác EFAN là hình bình hành
=>EF=AN.EF//AN(2)
Từ (1) và (2) => MA=AN ; A,M,N thẳng hàng
=> M đối xứng N qua A
Ak quên câu C =.= ko thấy .V
C/Ta có M đối xứng H qua AB
=> AB là đg trung trực
=>MB=HB;MA=HA
Xét tam giác ABM và tam giác HAB có
BM=BH
MA=MH
AB chung
=>tam giác ABM = tam giác HAB (c-c-c)
=) góc M = góc H =90độ
Ta có H đối xứng N qua AC
=> AC là đg trung trực
=>HC=CN;HA=AN
Xét tam giác HCA và Tam giác ACN
HC=CN
HA=AN
AC chung
=>tam giác HCA = Tam giác ACN (c-c-c)
=) góc H= góc N =90 độ
Có CN vuông góc HA vuông góc BM
=> BM//CN
=> MBCN là hình thang mak góc BMN =90 đố => MBCN là hình thang vuông (dpcm)
A K I C M B 5 5 6
a. Ta có : IM = IK ( vì K đối xứng với M qua I)
IA = IC ( vì I là trung điểm AC)
\(\Rightarrow\) AMCK là hbh (1)
Ta lại có: AM là ĐTT của \(\Delta\)cân ABC đồng thời là đường cao
\(\Rightarrow\)\(AM\perp BC\)
\(\Rightarrow\)\(\widehat{AMC}=90^0\)(2)
Từ (1) và (2) suy ra: AMCK là HCN
b. Ta có: \(AC=KM\)( vì AMCK là HCN )
Mà \(AC=AB\)( vì \(\Delta\)ABC cân tại A )
\(\Rightarrow\)\(KM=AB\)(3)
Ta lại có: \(AK=MC\)( vì AMCK là HCN )
Mà \(BM=MC\)( vì AM là ĐTT )
\(\Rightarrow\)\(AK=BM\)(4)
Từ (3) và (4) suy ra : ABMK là hbh
c. Để tứ giác AMCK là hình vuông thì:
\(AM=MC\)
Mà \(BM=MC=\frac{BC}{2}\)
\(\Rightarrow\)\(AM=\frac{BC}{2}\)
Vậy \(\Delta\)ABC vuông cân tại A.
d. Ta có: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3cm\)
Áp dụng định lí pitago cho \(\Delta MCK\)vuông tại C
\(MK^2=MC^2+KC^2\)
\(5^2=3^2+KC^2\)
\(25=9+KC^2\)
\(KC^2=25-9\)
\(KC^2=16\)
\(\Rightarrow KC=4cm\)
Diện tích của HCN AMCK là:
\(S_{AMCK}=MC\times KC=3\times4=12cm^2\)
a/ Xét tứ giác DPMQ có
\(\widehat{EDF}=\widehat{MQD}=\widehat{MPD}=90^o\)
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> \(\widehat{IDE}=\widehat{EDM}\) (2)
CMTT : DM = DK (3) ; \(\widehat{KDF}=\widehat{FDM}\) (4)
Từ (2) ; (4)
=> \(\widehat{IDE}+\widehat{EDF}+\widehat{KDF}=\widehat{IDK}=180^o\)
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
M N P Q D H E F O
a) F là trung điểm MN; E là trung điểm MP ( giả thiết ) (1)
=> EF là đường trung bình của tam giác MNP
=> EF//=NP/2 (2)
mà Tam giác MNP cân tại M => MN=MP (3)
(1) , (3) => FM=FN=EM=EP (4)
(2), (4) => NFEP là hình thang cân
b) \(MH\perp NP\)(giả thiết ) (5)
(2), (5) => \(MH\perp EF\)(6)
Tam giác MNP cân tại M có M H là đường cao => MH là đường trung tuyên => H là trung điểm NP
Khi đó FH là đường trung bình tam giác MNP => FH //=ME=> FMEH là hình bình hành (7)
Từ (6); (7) => MFHE là hình thoi
c) EF là đường trung bình của OQD => EF//=QD/2 (8)
Từ (2), (8) => NP//=QD=> QNPD là hinh bình hành
OD=2 OE=NO => O là trung điểm ND
=> OH là đường trung bình tam giác NDP => OH//DP mà OH vuông NP => DP vuông NP (9)
Từ (8), (9) => QDPN là hình chữ nhật
c) NP=12 cm => HP=6 cm
=> \(MH=\sqrt{MP^2-HP^2}=\sqrt{10^2-6^2}=8\)
dienj tích MNP =\(\frac{1}{2}.12.8\)