K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

M N P Q D H E F O

a) F là trung điểm MN; E là trung điểm MP ( giả thiết ) (1)

=> EF là đường trung bình của tam giác MNP

=> EF//=NP/2 (2)

mà Tam giác MNP cân tại M => MN=MP (3)

(1) , (3) => FM=FN=EM=EP (4)

(2), (4) => NFEP là hình thang cân

b) \(MH\perp NP\)(giả thiết ) (5)

(2), (5) => \(MH\perp EF\)(6)

Tam giác MNP cân tại M có M H là đường cao => MH là đường trung tuyên =>  H là trung điểm NP

Khi đó FH là đường trung bình tam giác MNP => FH //=ME=> FMEH là hình bình hành  (7)

Từ (6); (7) => MFHE là hình thoi

c) EF là đường trung bình của OQD => EF//=QD/2 (8)

Từ (2), (8) => NP//=QD=> QNPD là hinh bình hành

OD=2 OE=NO => O là trung điểm ND

=> OH là đường trung bình tam giác NDP => OH//DP mà OH vuông NP => DP vuông NP (9)

Từ (8), (9) => QDPN là hình chữ nhật 

c) NP=12 cm => HP=6 cm

=> \(MH=\sqrt{MP^2-HP^2}=\sqrt{10^2-6^2}=8\)

dienj tích MNP =\(\frac{1}{2}.12.8\)

a: Xét ΔDMP vuông tại D và ΔENP vuông tại E có

góc P chung

=>ΔDMP đồng dạng với ΔENP

b: ΔDMP đồng dạng với ΔENP

=>PE/PD=MP/NP=MD/NE

=>PE/6=18/12=3/2

=>PE=9cm

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và CQua I vẽ đường thẳng song song vs AB, cắt AC ở HQua I vẽ đường thẳng song song vs AC, cắt AB ở Ka) Tứ giác AHIK là hình gì?b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là...
Đọc tiếp

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và C

Qua I vẽ đường thẳng song song vs AB, cắt AC ở H

Qua I vẽ đường thẳng song song vs AC, cắt AB ở K

a) Tứ giác AHIK là hình gì?

b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?

c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?

Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng vs D qua AC, F là giao điểm của DN và AC

a) Tứ giác AEDF là hình gì? Vì sao?

b) Các tứ giác ADBM, ADCN là hình gì? Vì sao?

c) CMR: M đối xứng vs N qua A

d) Tam giác vuông ABC có điều kiện gì thì tứ giác ADEF ,là hình vuông

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. gọi D là điểm đối xứng vs H qua AB, gọi E là điểm đx vs H qua Ac

a) CM D đx vs E qua A

b) Tam giác DHE là tam giác gì? Vì sao? 

c) Tứ giác BNEC là hình gì? Vì sao

d) CMR BC= BD+CE

Bài 3: Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm đk của tứ giác ABCD để EFGH là:

a) Hình chứ nhật  ; b) Hình thoi   ; c) hình vuông   

Bài 4: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm của GC.

a) CMR: Tứ giác DEHK là hbh

b) Tam giác ABC có đk j thì tứ giác DEHK là hcn

c) Nếu các đường trung tuyến BN và CE vuông góc vs nhau thì tứ giác DEHK là hình j?

0
15 tháng 12 2018

Hình tự vẽ dc ko ạ =(((( mik vẽ r nhưng lại bị out ra =.= lười lắm ạ

A/ xét tg AEHF ta có : HE vuông góc AB, FA vuông góc AB, HE//AC (gt)

=> góc AEH = góc EAF = góc AFH = 90 độ

=> Tứ giác AEHF là HCN

=>AH=EF

B/ Ta có H đối xứng M qua E => ME=EH

 mak EH= AF (hcn) => ME=À

Ta có H đối xứng vs N qua F => FH=FN

mak FH =EA (hcn) => FN=EA

Xét tứ giác MEFA có :

+ ME=AF

+ ME//AF( slt)

=>Tứ giác MEFA là hình bình hành

=>EF=MA,EF//MA (1)

Xét tứ giác EFAN có :

+ FN = EA

+ AE//FN (slt)

=>Tứ giác EFAN là hình bình hành

=>EF=AN.EF//AN(2)

Từ (1) và (2) => MA=AN ; A,M,N thẳng hàng

=> M đối xứng N qua A

15 tháng 12 2018

Ak quên câu C =.= ko thấy .V

C/Ta có M đối xứng H qua AB

=> AB là đg trung trực 

=>MB=HB;MA=HA

Xét tam giác ABM và tam giác HAB có

BM=BH

MA=MH

AB chung

=>tam giác ABM = tam giác HAB (c-c-c)

=) góc M = góc H =90độ

Ta có H đối xứng N qua AC

=> AC là đg trung trực

=>HC=CN;HA=AN

Xét tam giác HCA và Tam giác ACN

HC=CN

HA=AN

AC chung

=>tam giác HCA = Tam giác ACN (c-c-c)

=) góc H= góc N =90 độ

Có CN vuông góc HA vuông góc BM

=> BM//CN

=> MBCN là hình thang mak góc BMN =90 đố => MBCN là hình thang vuông (dpcm)

24 tháng 12 2017

giúp mk với đang cần gấp

24 tháng 12 2017

A K I C M B 5 5 6  

a. Ta có : IM = IK ( vì K đối xứng với M qua I)

                IA = IC ( vì I là trung điểm AC)

\(\Rightarrow\) AMCK là hbh (1)

Ta lại có: AM là ĐTT của \(\Delta\)cân ABC đồng thời là đường cao

\(\Rightarrow\)\(AM\perp BC\)

\(\Rightarrow\)\(\widehat{AMC}=90^0\)(2)

Từ (1) và (2) suy ra: AMCK là HCN

b. Ta có: \(AC=KM\)( vì AMCK là HCN )

Mà \(AC=AB\)( vì \(\Delta\)ABC cân tại A ) 

\(\Rightarrow\)\(KM=AB\)(3)

Ta lại có: \(AK=MC\)( vì AMCK là HCN )

Mà \(BM=MC\)( vì AM là ĐTT )

\(\Rightarrow\)\(AK=BM\)(4)

Từ (3) và (4) suy ra : ABMK là hbh

c. Để tứ giác AMCK là hình vuông thì:

\(AM=MC\)

Mà \(BM=MC=\frac{BC}{2}\)

\(\Rightarrow\)\(AM=\frac{BC}{2}\)

Vậy \(\Delta\)ABC vuông cân tại A.

d. Ta có: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3cm\)

Áp dụng định lí pitago cho \(\Delta MCK\)vuông tại C

\(MK^2=MC^2+KC^2\)

\(5^2=3^2+KC^2\)

\(25=9+KC^2\)

\(KC^2=25-9\)

\(KC^2=16\)

\(\Rightarrow KC=4cm\)

Diện tích của HCN AMCK là:

\(S_{AMCK}=MC\times KC=3\times4=12cm^2\)

20 tháng 12 2021

tham khảo: Câu hỏi của dũngz

undefinedundefined

2 tháng 2 2021

a/ Xét tứ giác DPMQ có

\(\widehat{EDF}=\widehat{MQD}=\widehat{MPD}=90^o\)

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> \(\widehat{IDE}=\widehat{EDM}\) (2) 

CMTT : DM = DK (3) ; \(\widehat{KDF}=\widehat{FDM}\) (4)

Từ (2) ; (4)

=> \(\widehat{IDE}+\widehat{EDF}+\widehat{KDF}=\widehat{IDK}=180^o\)

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D

6 tháng 12 2021

bạn tự làm