Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác EAFI có
M là trung điểm của EF avf AI
nên EAFI là hình bình hành
b: Xét tứ giác EFIB có
N là trung điểm của EI và FB
nên EFIB là hình bình hành
a: Xét tứ giác AHBN có
M là trung điểm chung của AB và HN
góc AHB=90 độ
Do đó: AHBN là hình chữ nhật
b Xét tứ giác ANHE có
AN//HE
AN=HE
Do đó: ANHE là hình bình hành
=>AE//NH
a: Xét tứ giác BGCN có
D là trung điểm của đường chéo BC
D là trung điểm của đường chéo GN
Do đó: BGCN là hình bình hành
a: Ta có: BC=DA(BADC là hình bình hành)
\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)
\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)
Do đó: MB=MC=NA=ND
Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
b: Hình bình hành ABMN có BA=BM(=BC/2)
nên ABMN là hình thoi
c: Ta có: MB//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
mà \(\widehat{EAD}=60^0\)
nên \(\widehat{EBM}=60^0\)
Ta có: BA=BE
BA=BM(=BC/2)
Do đó: BE=BM
Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét tứ giác ANME có NM//AE(ABMN là hình thoi)
nên ANME là hình thang
Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)
nên ANME là hình thang cân
=>AM=NE
a: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
a: Xét tứ giác ABNC có
O là trung điểm của BC
O là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF