Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai sai kiểu gì đó bà kia à. không tin bà đọc lại xem
a: Xét ΔABD và ΔACE có
AB/AC=AD/AE
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
b: Xét ΔADE và ΔABC có AD/AB=AE/AC
\(\widehat{A}\) chung
Do đó: ΔADE∼ΔABC
a: Xét ΔBOD và ΔAOE có
OB/OA=OD/OE
góc BOD=góc AOE
=>ΔBOD đồng dạng với ΔAOE
b: ΔBOD đồng dạng với ΔAOE
=>góc BDO=góc AEO
=>góc CEB=góc CDA
mà góc C chung
nên ΔCEB đồng dạng với ΔCDA
a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
Xét ΔABC vuông tại A có AE là đường cao
nên AE^2=BE*CE
b: Xét tứ giác AEDC có
góc AEC=góc ADC=90 độ
=>AEDC là tứ giác nội tiếp
=>góc EAD=góc BCO
*TH1: AD và BC cắt nhau về phía AB.
a. -Ta có: Các góc đối bù nhau (gt).
=>\(\left[{}\begin{matrix}\widehat{BAD}+\widehat{BCD}=180^0\\\widehat{ABC}+\widehat{ADC}=180^0\end{matrix}\right.\).
- Ta có: \(\widehat{BAD}+\widehat{BAE}=180^0\) (kề bù).
Mà \(\widehat{BAD}+\widehat{BCD}=180^0\) (gt).
=>\(\widehat{BAE}=\widehat{BCD}\).
- Xét △EAB và △ECD có:
\(\widehat{E}\) là góc chung.
\(\widehat{BAE}=\widehat{ECD}\) (cmt)
=>△EAB ∼ △ECD (g-g).
=>\(\dfrac{AE}{AB}=\dfrac{CE}{CD}\) (2 tỉ lệ tương ứng).
=>\(AE.CD=EC.AB\).
- Xét △EAC và △EBC có:
\(\widehat{E}\) là góc chung.
\(\dfrac{AE}{EC}=\dfrac{EB}{DE}\) (△EAB ∼ △ECD)
=>△EAC ∼ △EBD (c-g-c).
b.- Xét △ADO và △BCO có:
\(\widehat{ADO}=\widehat{BCO}\) (△EAC ∼ △EBD).
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh).
=>△ADO ∼ △BCO (g-g).
=> \(\dfrac{AO}{BO}=\dfrac{DO}{CO}\) (2 tỉ lệ tương ứng).
- Xét △ABO và △DCO có:
\(\widehat{AOB}=\widehat{DOC}\) (đối đỉnh).
\(\dfrac{AO}{BO}=\dfrac{DO}{CO}\) (cmt).
=>△ABO ∼ △DCO (c-g-c).
=>\(\widehat{ABO}=\widehat{DCO}\) (2 góc tương ứng) hay \(\widehat{ABD}=\widehat{DCA}\).
*TH2: AD và BC cắt nhau về phía DC. Tương tự như TH1, chỉ thay đổi vài chỗ.
a: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét ΔEAC và ΔEBD có
\(\widehat{ECA}=\widehat{EDB}\left(=\dfrac{sđ\stackrel\frown{AB}}{2}\right)\)
Do đó: ΔEAC\(\sim\)ΔEBD
Suy ra: \(\dfrac{AE}{BE}=\dfrac{EC}{ED}\)
hay \(\dfrac{AE}{EC}=\dfrac{BE}{ED}\left(1\right)\)
Xét ΔEAB và ΔECD có
\(\widehat{E}\) chung
\(\widehat{EAB}=\widehat{ECD}\)
Do đó: ΔEAB\(\sim\)ΔECD
Suy ra: \(\dfrac{BE}{DE}=\dfrac{AB}{CD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{AB}{CD}\)
hay \(AE\cdot CD=AB\cdot EC\)
b: Ta có: ABCD là tứ giác nội tiếp
nên \(\widehat{ABD}=\widehat{DCA}\)(hai góc nội tiếp cùng chắn cung AD)
1, Xét ΔADE và ΔABC có:
Góc AED = góc ACB (gt)
Góc BAC chung
⇒ ΔADE ~ ΔABC (g.g)
2, Theo câu a ta có: ΔADE ~ ΔABC ⇒ \(\dfrac{AC}{AB}=\dfrac{AE}{AD}\)
Xét ΔAEC và ΔADB có:
Góc BAC chung
\(\dfrac{AC}{AB}=\dfrac{AE}{AD}\) (cmt)
⇒ ΔAEC ~ ΔADB (c.g.c)
⇒ góc ABD = góc ACE
Lệnh anh/ chị