Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác AED có :
\(\widehat{A}\)chung
\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)
Suy ra tam giác ABC ~ tam giác AED ( c-g-c )
b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)
c) Xét tam giác ADC và tam giác AEB có :
\(\widehat{A}\)chung
\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)
Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )
\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)
Xét tam giác KCE và tam giác KDB có :
\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)
Suy ra tam giác KCE ~ tam giác KDB ( g-g )
Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)
Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)
Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)
Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)
Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)
\(\RightarrowĐPCM\)
Xét ΔADE và ΔABC co
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng với ΔABC
Xét ΔABE và ΔACD có
AB/AC=AE/AD
góc A chung
=>ΔABE đồng dạng với ΔACD
a) Dễ thấy : \(\Delta ABC\) đồng dạng với \(\Delta DEC\) (g.g) (Góc A = Góc CDE; góc C chung)
b) Từ a => \(\frac{AB}{DE}=\frac{AC}{DC}=\frac{BC}{EC}\)
c) Từ b => DC.BC = EC.AC