Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AEC ta có :
AEC + ABC + ECB = 180 độ
=> AEC + ABC = 90 độ
=> ACE + ACB = 90 độ
Mà tam giác ABC đều (gt)
=> ABC =ACB
=> AEC = ACE
=> Tam giác AEC cân tại A
=> AE = AC
Lại cm tương tự ta có :
=> Tam giác ACF cân tai C
=> AC = CF
Mà tam giác ABC đều
=> AB = AC = BC
=> AB = BC = AF= CF
=> A là trung điểm BE(1)
=> C là trung điểm BF(2)
Từ (1) và (2) => AC là đường trung bình của tam giác BEF
=> AC //EF
=> ACEF là hình thang
Mà AE = CF (cmt)
=> ACEF là hình thang cân (dpcm)
\(\Delta ABC\) đều => \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\); \(AB=AC=BC\)
Xét \(\Delta ABF\) và \(\Delta CBE\) có:
- \(AB=BC\)
-\(\widehat{BAF}=\widehat{BCE}=90^o\)
- \(\widehat{B}\) chung
=> \(\Delta ABF=\Delta CBE\left(g-c-g\right)\)
=> \(BE=BF\)=> \(\Delta BEF\) cân tại B=> \(\widehat{E}=\widehat{F}\)(1)
Ta có:\(\Delta BEF\)cân có \(\widehat{B}=60^o\)=> \(\Delta BEF\) đều=> \(\widehat{F}=60^o\). Mà \(\widehat{BCA}=60^o\)=>\(\widehat{F}=\widehat{BCA}\)( đồng vị) => \(AC//EF=>ACFE\) là hình thang (2)
Từ (1) và (2)=> \(ACFE\)là hình thang cân.
a. AE = AF:
Δ ABE = Δ ADF vì:
AB = AD ( cạnh hình vuông)
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^)
=> AE = AF
b. Tứ gaíc EGFK là hình thoi
EG // AB và AB // FK => EG // FK (*)
=> \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong)
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF
theo giả thiết: IE = IF (2)
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**)
(*) và (**) => EGFK là hình bình hành
vì AI là trung trực của EF => EG = FG
vậy hình bình hành EGFK là hình thoi.
c. tam giác FIK đồng dạng tam giác FCE
Δ FIK ~ Δ FEC vì:
\(\widehat{F}\)chung
\(\widehat{KIF}=\widehat{ECF}\) = 1v
d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi
gọi cạnh hình vuông là a, ta có:
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi
a, \(\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)
b, Từ \(\left(1\right)\Rightarrow\widehat{BAD}=\widehat{BED}\)( 2 góc tướng ứng ) hay \(\widehat{BAC}=\widehat{HED}\)
\(\Rightarrow\widehat{HED}=90^0\Rightarrow DE\perp BC\)
Mà \(AH\perp BC\left(gt\right)\Rightarrow DE//AH\Rightarrow ADEH\)là hình thang
cùng với \(\widehat{HED}=90^0\)nên ADEH là hình thang vuông.
c, Từ (1) \(\Rightarrow DA=DE\)
Lại có \(BA=BE\left(gt\right)\Rightarrow BD\)là đường trung trực của đoạn thẳng AE
\(\Rightarrow BD\perp AE\)
\(AH\perp BE\left(gt\right)\), AH giao BD tại I
Do đó: I là trực tâm của \(\Delta ABE\Rightarrow EF\perp AB\)
Mặt khác, \(\Delta ABC\)vuông tại A (gt) nên \(AB\perp AC\)
Từ đó dẫn đến ACEF là hình thang vuông
Chúc bạn học tốt
a: Xét ΔHAD vuông tại H và ΔBCD vuông tại B có
\(\widehat{HDA}=\widehat{BDC}\)
Do đó; ΔHAD~ΔBCD
b: ta có; ΔHAD~ΔBCD
=>\(\widehat{BCD}=\widehat{HAD}\)
mà \(\widehat{BCD}=\widehat{ACD}\)
nên \(\widehat{HAD}=\widehat{ACD}\)
Xét ΔHAD vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAD}=\widehat{HCA}\)
Do đó: ΔHAD~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HD}{HA}\)
=>\(HA^2=HD\cdot HC\)
c: Ta có: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔCBA có CD là phân giác
nên \(\dfrac{BD}{BC}=\dfrac{DA}{CA}\)
=>\(\dfrac{BD}{8}=\dfrac{DA}{10}\)
=>\(\dfrac{BD}{4}=\dfrac{DA}{5}\)
mà BD+DA=BA=6cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{DA}{5}=\dfrac{BD+DA}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)
=>\(DA=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)
a
Xét \(\Delta AEB\) có:\(\widehat{ABE}=90^0;\widehat{BAE}=60^0\Rightarrow\widehat{AEB}=30^0\)
Ta có:\(\widehat{ABC}=\widehat{ABO}+\widehat{OBE}+\widehat{EBC}\Rightarrow\widehat{OBE}=180^0-90^0-60^0=30^0\)
Khi đó \(\widehat{AEB}=\widehat{OBE}=30^0\) suy ra \(\Delta EOB\) cân tại O
b
Ta có:\(\widehat{AOE}=\widehat{AOB}+\widehat{BOC}+\widehat{COE}\Rightarrow\widehat{BOC}=180^0-90^0-60^0=30^0\)
Khi đó:\(\widehat{BOI}=\widehat{IBO}=30^0\Rightarrow\Delta IOB\) cân tại I
\(\Rightarrow IO=IB\)
Xét \(\Delta OIE\) và \(\Delta BIC\) có:
\(OI=BI;\widehat{EOI}=\widehat{CBI}=90^0;\widehat{OIE}=\widehat{BIC}\left(đ.đ\right)\Rightarrow\Delta OIE=\Delta BIC\left(cgv.gn\right)\)
\(\Rightarrow OE=BC\Rightarrow OE+OA=BC+AB\Rightarrow AE=AC\)
\(\Rightarrow\Delta AEC\) cân tại A có \(\widehat{A}=60^0\) nên nó là tam giác đều.
c
Xét \(\Delta OCE\) và \(\Delta BEC\) có:\(OE=BC;\widehat{EBC}=\widehat{COE}=60^0;\widehat{EOC}=\widehat{EBC}=90^0\)
\(\Rightarrow\Delta OCE=\Delta BEC\left(cgv.gn\right)\Rightarrow OC=BE\) ( 1 )
Mặt khác:\(\widehat{ABO}=\widehat{BCE}=60^0\Rightarrow OB//CE\Rightarrow OBCE\) là hình thang.
Kết hợp với ( 1 ) ta có được tứ giác OBCE là hình thang cân.
a: \(\widehat{ACD}+\widehat{ACB}=90^0\)
\(\widehat{ADC}+\widehat{B}=90^0\)
mà \(\widehat{ACB}=\widehat{B}\)
nên \(\widehat{ACD}=\widehat{ADC}\)
hay ΔADC cân tại A
b: Xét ΔBFD có
FA là đường cao
FA là đường trung tuyến
Do đó: ΔBFD cân tại F
a: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
=>EF//MH
Xét ΔABC có BE/BA=BM/BC
nên ME//AC và ME/AC=1/2
=>ME=1/2AC=HF
Xét tứ giác MHEF có
MH//EF
ME=HF
Do đo: MHEF là hình thang cân
b: Xét ΔAMF vuông tại F và ΔCKF vuông tại F có
FA=FC
góc MAF=góc KCF
Do đó: ΔAMF=ΔCKF
=>MF=KF
=>F là trung điểm của MK
Xét tứ giác AMCK có
F là trung điểm chung của AC và MK
MA=MC
Do đó: AMCK là hình thoi
a.Ta có CDCD là phân giác góc C
→DA\DB=CA\CB=2→DA\DA+DB=2\2+1
→DA\AB=2\3
→DA=2\3AB=2\3AC=16(AB=AC)
→BD=AB−AD=8
b.Vì CE⊥CD,CD là phân giác trong của ΔABC
→CElà phân giác ngoài ΔABC
→EB\EA=CB\CA=1\2
→BE\EA−EB=1\2−1
→BE\AB=1
→BE=AB=AC=24
.Ta có CDCD là phân giác góc C
→DADB=CACB=2→DADA+DB=22+1→DADB=CACB=2→DADA+DB=22+1
→DAAB=23→DAAB=23
→DA=23AB=23AC=16(AB=AC)→DA=23AB=23AC=16(AB=AC)
→BD=AB−AD=8→BD=AB−AD=8
b.Vì CE⊥CD,CDCE⊥CD,CD là phân giác trong của ΔABCΔABC
→CE→CE là phân giác ngoài ΔABCΔABC
→EBEA=CBCA=12→EBEA=CBCA=12
→BEEA−EB=12−1→BEEA−EB=12−1
→BEAB=1→BEAB=1
→BE=AB=AC=24
....
Hello, kb ko?