Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AEC ta có :
AEC + ABC + ECB = 180 độ
=> AEC + ABC = 90 độ
=> ACE + ACB = 90 độ
Mà tam giác ABC đều (gt)
=> ABC =ACB
=> AEC = ACE
=> Tam giác AEC cân tại A
=> AE = AC
Lại cm tương tự ta có :
=> Tam giác ACF cân tai C
=> AC = CF
Mà tam giác ABC đều
=> AB = AC = BC
=> AB = BC = AF= CF
=> A là trung điểm BE(1)
=> C là trung điểm BF(2)
Từ (1) và (2) => AC là đường trung bình của tam giác BEF
=> AC //EF
=> ACEF là hình thang
Mà AE = CF (cmt)
=> ACEF là hình thang cân (dpcm)
\(\Delta ABC\) đều => \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\); \(AB=AC=BC\)
Xét \(\Delta ABF\) và \(\Delta CBE\) có:
- \(AB=BC\)
-\(\widehat{BAF}=\widehat{BCE}=90^o\)
- \(\widehat{B}\) chung
=> \(\Delta ABF=\Delta CBE\left(g-c-g\right)\)
=> \(BE=BF\)=> \(\Delta BEF\) cân tại B=> \(\widehat{E}=\widehat{F}\)(1)
Ta có:\(\Delta BEF\)cân có \(\widehat{B}=60^o\)=> \(\Delta BEF\) đều=> \(\widehat{F}=60^o\). Mà \(\widehat{BCA}=60^o\)=>\(\widehat{F}=\widehat{BCA}\)( đồng vị) => \(AC//EF=>ACFE\) là hình thang (2)
Từ (1) và (2)=> \(ACFE\)là hình thang cân.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a: \(\widehat{ACD}+\widehat{ACB}=90^0\)
\(\widehat{ADC}+\widehat{B}=90^0\)
mà \(\widehat{ACB}=\widehat{B}\)
nên \(\widehat{ACD}=\widehat{ADC}\)
hay ΔADC cân tại A
b: Xét ΔBFD có
FA là đường cao
FA là đường trung tuyến
Do đó: ΔBFD cân tại F