Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AH=(BC.1/2)tan60 ct lương giác
=BC.tan60.1/2=\(\sqrt{3}\)/2
họk tốt!
Gọi M là trung điểm của BC
Ta có: ΔABC đều
mà AM là đường trung tuyến
nên AM\(\perp\)BC tại M
Xét ΔAMB vuông tại M có \(sinB=\dfrac{AM}{AB}\)
=>\(\dfrac{AM}{1}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(AM=\dfrac{\sqrt{3}}{2}\)
Xét ΔABC có AM là đường trung tuyến
nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)
=>\(\overrightarrow{AB}-\overrightarrow{CA}=2\cdot\overrightarrow{AM}\)
=>\(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\cdot AM=2\cdot\dfrac{\sqrt{3}}{2}=\sqrt{3}\)
=>A đúng, B và C đều sai
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|=\left|\overrightarrow{CB}\right|=CB=1\)
=>D sai
+) \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {ABC} = 60^\circ \)
+) Dựng hình bình hành ABCD, ta có: \(\overrightarrow {AD} = \overrightarrow {BC} \)
\( \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD} = 120^\circ \)
+), Ta có: ABC là tam giác đều, H là trung điểm BC nên \(AH \bot BC\)
\(\left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AH} ,\overrightarrow {AD} } \right) = \widehat {HAD} = 90^\circ \)
+) Hai vectơ \(\overrightarrow {BH} \) và \(\overrightarrow {BC} \)cùng hướng nên \(\left( {\overrightarrow {BH} ,\overrightarrow {BC} } \right) = 0^\circ \)
+) Hai vectơ \(\overrightarrow {HB} \) và \(\overrightarrow {BC} \)ngược hướng nên \(\left( {\overrightarrow {HB} ,\overrightarrow {BC} } \right) = 180^\circ \)
\(BC=AD=\sqrt{AC^2-AB^2}=2a\)
a/ \(T=\left|3\overrightarrow{AB}-4\overrightarrow{BC}\right|\Rightarrow T^2=9AB^2+16BC^2-24\overrightarrow{AB}.\overrightarrow{BC}\)
\(=9a^2+64a^2=73a^2\Rightarrow T=a\sqrt{73}\)
b/ \(T^2=4AB^2+9BC^2+12.\overrightarrow{BA}.\overrightarrow{BC}=4AB^2+9BC^2=40a^2\)
\(\Rightarrow T=2a\sqrt{10}\)
c/ \(T=\left|\overrightarrow{AD}+3\overrightarrow{BC}\right|=\left|\overrightarrow{AD}+3\overrightarrow{AD}\right|=\left|4\overrightarrow{AD}\right|=4AD=8a\)
d/ \(T=\left|2\overrightarrow{DC}-3\overrightarrow{DC}\right|=\left|-\overrightarrow{DC}\right|=CD=AB=a\)
1.
Đặt \(P=\left|\overrightarrow{AD}+3\overrightarrow{AB}\right|\Rightarrow P^2=AD^2+9AB^2+6\overrightarrow{AD}.\overrightarrow{AB}\)
\(=AD^2+9AB^2=10AB^2=10a^2\)
\(\Rightarrow P=a\sqrt{10}\)
2.
Tam giác ABC đều nên AM là trung tuyến đồng thời là đường cao \(\Rightarrow AM\perp BM\)
\(AM=\dfrac{a\sqrt{3}}{2}\) ; \(BM=\dfrac{a}{2}\)
\(T=\left|\overrightarrow{MA}+2\overrightarrow{MB}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)
\(\Rightarrow T^2=MA^2+4MB^2+4\overrightarrow{MA}.\overrightarrow{MB}=MA^2+4MB^2\)
\(=\left(\dfrac{a\sqrt{3}}{2}\right)^2+4\left(\dfrac{a}{2}\right)^2=\dfrac{7a^2}{4}\Rightarrow T=\dfrac{a\sqrt{7}}{2}\)
3.
\(T=\left|\overrightarrow{AB}+\overrightarrow{CG}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right|=\left|\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{AB}\right|\)
\(=\left|\dfrac{4}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\right|\Rightarrow T^2=\dfrac{16}{9}AB^2+\dfrac{4}{9}AC^2-\dfrac{16}{9}\overrightarrow{AB}.\overrightarrow{AC}\)
\(=\dfrac{20}{9}AB^2-\dfrac{16}{9}AB^2.cos60^0=\dfrac{20}{9}a^2-\dfrac{16}{9}a^2.\dfrac{1}{2}=\dfrac{4}{3}a^2\)
\(\Rightarrow T=\dfrac{2a}{\sqrt{3}}\)
Mệnh đề C sai.
Xét:
A. Đúng
Vẽ hbh ABDC => \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AD}\right|=AD\) (\(=2AH\))
Ta lại có, \(\Delta ABH\) vuông tại H, theo Pytago:
\(AH=\sqrt{AB^2-\frac{AB^2}{4}}=\frac{3\sqrt{3}}{2}\) \(\Rightarrow AD=3\sqrt{3}\)
B. Đúng
Vẽ hình vuông AECH\(\Rightarrow\) AEHB là hbh
Ta có:
\(\left|\overrightarrow{BA}+\overrightarrow{BH}\right|=\left|\overrightarrow{BA}+\overrightarrow{AE}\right|=\left|\overrightarrow{BE}\right|=BE\)
Ta lại có, \(\Delta BCE\) vuông tại C, theo Pytago:
\(BE=\sqrt{BC^2+CE^2}=\sqrt{BC^2+AH^2}=\frac{\sqrt{63}}{2}\)
C. Sai
Vẽ hbh AFHC \(\Rightarrow\)AFBH là hình vuông
\(\Rightarrow\left|\overrightarrow{HA}+\overrightarrow{HB}\right|=\left|\overrightarrow{HA} +\overrightarrow{AF}\right|=HF\) \(=AC=3\)
D. Đúng
\(\left|\overrightarrow{HA}-\overrightarrow{HB}\right|=\left|\overrightarrow{BA}\right|=BA=3\)