Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: E,F lần lượt là trung điểm AB,BC
=> EF là đường trung bình
=> EF//AC
Mà \(\widehat{EAC}=\widehat{FCA}\)(Tam giác ABC cân tại A)
=> AEFC là hình thang cân
b) Ta có: EF là đường trung bình
\(\Rightarrow AC=2EF=2.20=40\left(cm\right)\)
c) Xét tứ giác ABDC có:
F Lfa trung điểm chung của BC và AD
=> ABDC là hình bình hành
bạn tự CM : FE//CA => AEFC là hình thang mà góc A = 90 độ => AEFC là hình thang vuông
Ta có : AE= EB= AB/2=3/2= 1,5 ( E trung điểm AB)
tam giác ABC là nữa tam giác đều =>BC=2AB=2.3=6 . Tính dc AC =\(3\sqrt{3}\)( Py-ta-go)
Theo hệ quả d/l talet FE//AC => \(\frac{EF}{AC}\)=\(\frac{EB}{AB}\)<=> EF = \(\frac{AC.EB}{AB}\)<=> EF = \(\frac{3\sqrt{3}.2}{6}\)=\(\sqrt{3}\)
Theo d/l Talet FE//AC => \(\frac{AE}{AB}=\frac{CF}{BC}\Rightarrow CF=\frac{AE.BC}{AB}=\frac{2.6}{3}=4\)
Xét tứ giác AEFC có FE//AC
nên AEFC là hình thang
mà \(\widehat{CAE}=90^0\)
nên AEFC là hình thang vuông
Ta có: EF vg AB và AB vg với AC
Suy ra: EF song song với AC.
Suy ra EFCA là hthang.
Mà góc BAC =AEF = 90
Suy ra: EFCA là hình thang vuông
a)ta có EF là đường trung bình t.g ABC nên EF// AC
=> AEFC là h. thang
lại có EA=FC( do AB=BC, EA=AB/2, FC=BC/2)
=> AEFC là h.thang cân
b) ta có BA=a
mà EA=AB/2
=> EA=a/2 và bằng luôn FC
có AC=a mà EF là đtb
=>EF=a/2
PAEFC=(a/2)x3+a