K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

D E F Q F O ) 60 o ) ) )

Bài làm

a) Ta có: \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)

Mà \(\widehat{PEF}=\widehat{PED}\)( Do EP là tia phân giác )

=> \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)

=> \(\widehat{OEF}+\widehat{OED}=\widehat{DEF}\)

hay \(2.\widehat{OEF}=\widehat{DEF}\)

Lại có: \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)

Mà \(\widehat{DFO}=\widehat{OFE}\)( QF là tia phân giác của góc F )

=> \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)

hay \(\widehat{2DFO}=\widehat{DFE}\)

Xét tam giác DEF có:

\(\widehat{D}+\widehat{DEF}+\widehat{DFE}=180^0\)( Tổng ba góc trong tam giác )

hay \(60^0+2\widehat{OEF}+2\widehat{OFE}=180^0\)

=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=180^0-60^0\)

=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=120^0\)

=> \(\widehat{OEF}+\widehat{OFE}=120^0:2\)

=> \(\widehat{OEF}+\widehat{OFE}=60^0\)

Xét tam giác OEF có:

\(\widehat{OEF}+\widehat{OFE}+\widehat{EOF}=180^0\)

hay \(60^0+\widehat{EOF}=180^0\)

=> \(\widehat{EOF}=180^0-60^0=120^0\)

Vậy \(\widehat{EOF}=120^0\)

Xét tam giác DEF có:

EP là tia phân giác của góc E

FQ là tia phân giác của góc F

Mà hai tia phân giác này cắt nhau ở O

=> O là tâm của đường tròn nội tiếp tam giác.

=> OQ = OP

b) Để hai điểm P và Q cách đều đường thẳng EF của tam giác DEF <=> EQ = PF 

# Học tốt #

8 tháng 6 2016

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

2 tháng 2 2016

áp dụng tính chất tổng 3 góc của tam giac vao tam giac ABC.có

gocB+gocC+gocA= 18độ

->goc B + goc C = 120 độ

->góc IAC + goc ICA = 60 độ

->góc AIC = 120 độ

KO LÀM DC CAU B DAU NHA

15 tháng 1 2020

Hình tự vẽ

Vì tam giác ABC cân tại A => góc B = góc C 

=> \(\widehat{B}=\widehat{C}=\left(180^{\text{o}}-2.70^{\text{o}}\right):2=20^{\text{o}}\)

=> \(\widehat{CBI}=\widehat{BCI}\) = 20 : 2 = 10o

=> Xét tam giác BIC có : \(\widehat{BIC}=\)180o - 10o - 10o = 160o

Hình tự vẽ nhé !

Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\left(1\right)\)

Xét tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(2\right)\) ( tính chất tổng 3 góc 1 tam giác )

Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-70^0}{2}=55^0\)

Vì tia phân giác góc B và C cắt nhau tại I \(\Rightarrow\widehat{BCI}=\widehat{CBI}=55^0\div2=27,5^0\) 

Xét tam giác BIC có \(\widehat{BCI}+\widehat{BIC}+\widehat{CBI}=180^0\) ( t/c tổng 3 góc 1 tam giác )

\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{BCI}+\widehat{CBI}\right)=180^0-\left(27,5^0+27,5^0\right)=125^0\)

góc DFE=180-60-70=50 độ

=>góc DFK=góc EFK=50/2=25 độ

góc DKF=góc KEF+góc KFE=70+25=95 độ

góc EKF=180-95=85 độ

22 tháng 12 2017

E H G K F 56 L 1 2 1 2

ta có góc G + góc E = 180 - 56 = 124(tính chất tổng 3 góc trong tam giác)

mặt khác góc G1 + góc G2 = 1/2 (góc G + góc E) = 124: 2 = 620

xét tam giác EGL có góc GLH là góc ngoài của tam giác nên góc GLH = góc G1 + góc E1 = 620