K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

D E F Q F O ) 60 o ) ) )

Bài làm

a) Ta có: \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)

Mà \(\widehat{PEF}=\widehat{PED}\)( Do EP là tia phân giác )

=> \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)

=> \(\widehat{OEF}+\widehat{OED}=\widehat{DEF}\)

hay \(2.\widehat{OEF}=\widehat{DEF}\)

Lại có: \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)

Mà \(\widehat{DFO}=\widehat{OFE}\)( QF là tia phân giác của góc F )

=> \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)

hay \(\widehat{2DFO}=\widehat{DFE}\)

Xét tam giác DEF có:

\(\widehat{D}+\widehat{DEF}+\widehat{DFE}=180^0\)( Tổng ba góc trong tam giác )

hay \(60^0+2\widehat{OEF}+2\widehat{OFE}=180^0\)

=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=180^0-60^0\)

=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=120^0\)

=> \(\widehat{OEF}+\widehat{OFE}=120^0:2\)

=> \(\widehat{OEF}+\widehat{OFE}=60^0\)

Xét tam giác OEF có:

\(\widehat{OEF}+\widehat{OFE}+\widehat{EOF}=180^0\)

hay \(60^0+\widehat{EOF}=180^0\)

=> \(\widehat{EOF}=180^0-60^0=120^0\)

Vậy \(\widehat{EOF}=120^0\)

Xét tam giác DEF có:

EP là tia phân giác của góc E

FQ là tia phân giác của góc F

Mà hai tia phân giác này cắt nhau ở O

=> O là tâm của đường tròn nội tiếp tam giác.

=> OQ = OP

b) Để hai điểm P và Q cách đều đường thẳng EF của tam giác DEF <=> EQ = PF 

# Học tốt #

3 tháng 5 2016

D E F

a/ Vì EF2=DE2+DF2 (Pytago)

=> Tam giác DEF vuông tại D

31 tháng 12 2017

Câu 1: giống bài vừa nãy t làm cho bạn rồi!

Câu 2:

vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)

Câu 3 :

sửa đề chút nha : EF là tia phân giác góc DEH

ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)

mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)

=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)

6 tháng 2 2020

A B C E D F O

a) +) Ta có:

^BOC = 90\(^o\)\(\frac{\widehat{BAC}}{2}\)= 120\(^o\)

+) OF là phân giác của ^BOC 

=> ^BOF = ^COF = 60\(^o\)

+) Ta có: ^BOE + ^BOC = 180\(^o\)

=> ^BOE = 180\(^o\)- 120 \(^o\)= 60 \(^o\)

=> ^DOC = ^BOE = 60 \(^o\) ( đối đỉnh)

+) Xét \(\Delta\)OBF và \(\Delta\)OBE có:

^BOF = ^BOE = 60\(^o\)

OB chung 

^OBF = ^OBE ( BO là phân giác ^EBF )

=> \(\Delta\)OBF = \(\Delta\)OBE 

=> OE = OF (1)

+) Xét \(\Delta\)ODC và \(\Delta\)OFC có:

^DOC = ^FOC = 60\(^o\)

OC chung 

^DCO = ^FCO ( CO là phân giác ^DCF )

=> \(\Delta\)ODC = \(\Delta\)OFC 

=> OD = OF (2)

Từ (1); (2) => OD = OE = OF
b) Ta có: OE = OF => \(\Delta\)OEF cân và ^EOF = ^EOB + ^FOB = 60\(^o\)+60\(^o\)=120\(^o\)

=> ^OEF = ^OFE = ( 180\(^o\)-120\(^o\)) : 2 = 30 \(^o\)

Tương tự ta có thể chứng minh đc:

^OFD = ^ODF = 30\(^o\)

^OED = ^ODE = 30\(^o\)

=> ^DFE = ^DEF = ^EDF = 30\(^o\)+30\(^o\)= 60\(^o\)

=> Tam giác DEF đều 

6 tháng 2 2020

Tại sao ^BOC = 90\(^o+\frac{\widehat{BAC}}{2}\). Em nên nhớ nó bởi vì sẽ ứng dụng vào rất nhiều bài.

Xét \(\Delta\)BOC có: ^BOC + ^BCO + ^CBO = 180\(^o\)

=> ^BOC = 180\(^o\)- ( ^BCO + ^CBO ) = 180\(^o\)- ( \(\frac{1}{2}\)^BCA + \(\frac{1}{2}\)^CBA) = 180\(^o\)- \(\frac{1}{2}\)( ^BCA + ^CBA) (1)

Xét \(\Delta\)ABC có: ^BAC + ^BCA + ^ABC = 180\(^o\)=> ^BCA + ^ABC = 180\(^o\)- ^BAC (2)

Từ (1); (2) =>  ^BOC = 180\(^o\) - \(\frac{1}{2}\)( 180\(^o\) - ^BAC ) = 90\(^o\)+  \(\frac{\widehat{BAC}}{2}\)

13 tháng 7 2019

a) BOC=180-(OBC+OCB)=180-(1/2.ABC+1/2.ACB)=180-[1/2(ABC+ACB)]=180-{1/2[180-BAC]}=180-1/2.120=180-60=120 độ

13 tháng 7 2019

A B C D E O F

a, tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)

góc BAC  = 60 (gt)

=> góc ABC + góc ACB = 180 - 60 = 120     (1)

BD là phân giác của góc ABC (gt) => góc DBC = 1/2*góc ABC (tc)

CE là phân giác của góc ACB (gt) => ECB = 1/2*góc ACB (tc)

=> góc DBC + góc ECB = 1/2*góc ABC + 1/2*góc ACB = 1/2(góc ABC + góc ACB) và (1)

=> góc DBC + góc ECB = 1/2*120 = 60 

xét tam giác OBC có : góc OBC + góc BCO + góc BOC = 180 (đl)

=> góc BOC = 180 - 60 = 120

b,  góc BOC + góc BOE = 180 (kb) mà góc BOC = 120 (câu a)

=> góc BOE = 180 - 120 = 60   (2)

OF là phân giác của góc BOC (gt) 

=> góc BOF = 1/2*BOC = góc FOC (tc) mà góc BOC = 120 (câu a)

=> góc BOF = 1/2*120 = 60  = góc FOC   (3)

(2)(3) => góc BOF = góc BOE 

xét tam giác BOF và tam giác BOE có  : BO chung

góc ABO = EBO = góc FBO do BO là phân giác của góc ABC (gt)

=> tam giác BOF = góc BOE (g-c-g)

c, góc DOC = góc BOE (đối đỉnh) mà góc BOE = 60 (Câu b)

=> góc DOC = 60

góc FOC = 60 (câu b)

=> góc DOC = góc FOC 

xét tam giác DOC và tam giác FOC có : OC chung

góc FCO = góc DCO do OC là phân giác của góc BCA (gt)

=> tam giác DOC = tam giác FOC (g-c-g)

=> OD = OF (Đn)

tam giác OEB = tam giác OFB (câu b) => OE = OF (đn)

=> OE = OF = OD 

d, góc EOB + góc BOF = góc EOF 

mà góc EOB = góc BOF = 60

=> góc EOF = 60.2 = 120    (4)

góc FOC + góc OCD = góc FOD 

mà góc FOC = góc OCD = 60

=> góc FOD = 60.2 = 120   (5)

(4)(5) => góc FOD = góc EOF = 120

xét tam giác EOF và tam giác DOF có : OF chung

OE = OD (Câu c)

=> tam giác EOF = tam giác DOF (c-g-c)

=> EF = DF (đn)

=> tam giác EFD cân tại F (đn)       (6)

OE = OF => tam giác OEF cân tại O => góc OFE = (180 - góc EOF) : 2 

mà góc EOF = 120 (cmt)

=> góc EFO = (180 - 120) : 2 = 30

tương tự cm được góc OFD = 30 

mà góc OFD + góc EFO = góc EFD 

=> góc EFD = 30 + 30 = 60      và (6)

=> tam giác EFD đều (tc)