Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dùng định lí py-ta-gô để chứng minh, ta thấy:
122 + 92 = 152
Vậy DEF là tam giác vuông. Tam giác này vuông tại E ( do DF là cạnh huyền )
b) Tia IE là tia đối của tia ED => 3 diểm I, E, D thẳng hàng và IE vuông góc với IF
Vậy cạnh cần tìm IF chính là cạnh huyền của tam giác vuông EFI.
Áp dụng định lí Pi-ta-gô, ta có:
IF2 = IE2 + EF2
IF2 = 52 + 122
IF2 = 25 + 144
IF2 = 169
IF = 13
Vậy độ dài IF là 13cm.
a) Ta có : \(15^2=9^2+12^2\)
\(225=81+144\)
\(\Rightarrow DF^2=DE^2+EF^2\)
\(\Rightarrow\Delta DEF\)là tam giác vuông tại E ( ĐL Py - ta - go đảo )
b) Ta có : \(\widehat{DEF}+\widehat{IEF}=180^o\)( kề bù )
\(90^o+\widehat{IEF}=180^o\)
\(\widehat{IEF}=180^o-90^o\)
\(\widehat{IEF}=90^o\)
\(\Rightarrow\Delta IEF\)là tam vuông tại E
Xét \(\Delta IEF\)vuông tại E có :
\(IF^2=IE^2+EF^2\)( ĐL Py - ta - go )
\(IF^2=5^2+12^2\)
\(IF^2=25+144\)
\(IF^2=169\)
\(\Rightarrow IF=\sqrt{169}=13\)
Vậy \(IF=13cm\)
a: Xét ΔEDI và ΔFDI có
DE=DF
\(\widehat{EDI}=\widehat{FDI}\)
DI chung
Do đó: ΔEDI=ΔFDI
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
\(\widehat{DEC}=\widehat{HEC}\)
Do đó; ΔEDC=ΔEHC
b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có
CD=CH
\(\widehat{DCK}=\widehat{HCF}\)
Do đó; ΔDCK=ΔHCF
Suy ra: CK=CF
a, Xét Δ DCE và Δ HCE, có :
EC là cạnh chung
\(\widehat{CDE}=\widehat{CHE}=90^o\)
\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))
=> Δ DCE = Δ HCE (g.c.g)
=> DC = HC
b, Xét Δ DCK và Δ HCF, có :
DC = HC (cmt)
\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)
=> Δ DCK = Δ HCF ( ch - cgn)
=> CK = CF
=> Δ CKF cân tại C