Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔAEC có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
hay ΔADE cân tại A
Bạn tự vẽ hình nha!
a.
Ta có:
- B1 + B2 = 180
- C1 + C2 = 180
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
- Ai đó giúp tớ giải bài toán này với :v Tớ cảm ơn nhiều nhiều nhiều lắm luôn ý!
Ta thấy AB = BD (GT) ; AC=CE (GT)
Mà AB = AC ( do tam gaics ABC cân tại A)
Nên BD=CE
Ta thấy ^DBA = 180 dộ - ^ABC
^ECA = 180 độ - ^ACB
mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA
Xét tam giác ABD và tam giác ACE có:
AB = AC
^BDA = ^ECA (cmt)
BD = CE ( cmt )
suy ra tam giác ABD = tam giác ACE (c.g.c)
Suy ra ^D = ^ E ( 2 cạnh tương ứng)
Suy ra tam giac ADE cân tại A
+, ta thấy DE = BD + BC + CE
MÀ BD =AB ( GT ); CE= AC (GT)
Suy ra DE = AB+ BC+AC
b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180
32 + ^ABC + ^ ACB =180
^ABC + ^ACB = 180-32=158
Suy ra ^ABC = ^ ACB = 158 :2 = 79
Mà ^ABC là góc ngoài của tam giac ABD cân tại b
Nên ^D=79:2=39,5
Suy ra D =^E= 39,5( tam giác ADE cân)
SUY ra DAC= 180-39,5-39,5=101
Hình vẽ:
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
bạn tham khảo bài này nhé : https://olm.vn/hoi-dap/detail/100443553347.html
a) Vì Góc B1+B2=180 độ(2 góc kè bù)
Góc C1+C2=180 độ( 2 góc kề bù)
mà: Góc B1=C1( tam giác ABC là tam giác đều)
=>Góc B2=C2
Xét tam giác ABD và tam giác ACE, có:
AB=AC( tam giác ABC là tam giác đều)
Góc B2=C2( cmt)
BD=CE( gt)
=> Tam giác ABD= tam giác ACE(c-g-c)
=>Góc D= góc E( 2 góc tương ứng)
=> Tam giác ADE là tam giác cân tại A.
Chúc các bạn học tốt nhaa!
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE