Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ANBM có:
+ D là trung điểm NM (N là điểm đối xứng với M qua D).
+ D là trung điểm AB (gt).
\(\Rightarrow\) Tứ giác ANBM là hình bình (dhnb).
a: Xét tứ giác ANBM có
D là trung điểm của AB
D là trung điểm của NM
Do đó: ANBM là hình bình hành
mà \(\widehat{AMB}=90^0\)
nên ANBM là hình chữ nhật
Câu b đề thiếu rồi bạn
a) Xét tứ giác AHCK ta có:
Vì O trung điểm AC
K đối xứng vs H qua O => O trung điểm HK
Mà AC và HK cắt nhau tại trung điểm O
=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)
Lại có ^AHC=90o ( AH là đường cao)
=> AHCK là hcn (hbh có 1 góc vuông)
b) Xét tứ giác ABMC có:
M đối xứng với A qua H => AM là đường trung trực
=> AB=AC (1)
Mặt khác:M đối xứng vs A qua H=> H trung điểm AM
AH là đường cao của tam giác ABC cân tại A
=> AH là đường trung tuyến của tam giác ABC
=>H là trug điểm BC (HB=HC)
mà AM và BC cắt nhau tại trug điểm H
Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)
Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)
c) Xét tứ giác ABHK có:
Vì HB=HC (cmt)
mà AK=HC ( AKHC là hcn)
=> AK=BH
Lại có AK//BC (AKHC là hcn)
=>AK//BH
Nên AKBH là hbh ( 2 cạnh đối // và = nhau)
d) VÌ HB=HC=BC/2 (cm câu a)
=> HC=6/2=3 cm
Áp dụng công thức tính S và hcn AKHC ta có:
SAKHC=AH.HC
=> SAKHC=4.3=12 (cm2)
Vậy SAKHC=12 cm2
SABC = \(\frac{4\times6}{2}\) = 12 (cm2)
BH là đường cao của tam giác BAC cân tại B.
=> BH là đường trung tuyến của tam giác ABC.
=> H là trung điểm của AC.
=> AH = HC = AC/2 = 6/2 = 3 (cm)
Tam giác HBC vuông tại H có:
BC2 = HB2 + HC2 (định lý Pytago)
= 42 + 32
= 16 + 9
= 25
BC = \(\sqrt{25}\) = 5 (cm)
Tam giác HBC vuông tại H có HI là đường trung tuyến (I là trung điểm của BC)
=> HI = BC/2 = 5/2 = 2,5 (cm)
I là trung điểm của BC (gt)
I là trung điểm của HD (H đối xứng D qua I)
=> BHCD là hình bình hành.
mà BHC = 900
=> BHCD là hình chữ nhật.
=> BHCD là hình vuông
<=> BH = HC
<=> Tam giác BAC có đường trung tuyến BH bằng 1 nửa cạnh AC.
<=> Tam giác ABC vuông tại B.
mà tam giác BAC cân tại B.
=> Tam giác BAC vuông cân tại B.
Vậy BHCD là hình vuông khi tam giác BAC vuông cân tại B.
b: Xét tứ giác AHBQ có
M là trung điểm của AB
M là trung điểm của HQ
Do đó: AHBQ là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBQ là hình chữ nhật
a: Xét tứ giác AHBK có
M là trung điểm của AB
M là trung điểm của HK
Do đó: AHBK là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBK là hình chữ nhật
b:
Xét tứ giác AKHC có
AK//HC
AK=HC
Do đó: AKHC là hình bình hành
c: Xét ΔABC có
N là trung điểm của AC
H là trung điểm của BC
Do đó: NH là đường trung bình
=>NH//AB và NH=AB/2
hay NH//AM và NH=AM
=>AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
a: Xét ΔDEF có
N là trung điểm của EF
P là trung điểm của DF
Do đó: NP là đường trung bình
=>NP//DE
DN=EF/2=10(cm)
a: Sửa đề: EH=14cm
\(S_{DHE}=\dfrac{1}{2}\cdot4\cdot14=2\cdot14=28\left(cm^2\right)\)
b: Xét tứ giác DHFN có
M là trung điểm chung của DF và HN
góc DHF=90 độ
Do đó: DHFN là hình chữ nhật