Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành
1: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của đường chéo BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
1: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
Bài 1)
Vì HC \(\perp\)AB
DB \(\perp\)AB
=> HC // DB (1) ( Từ vuông góc đến song song)
Vì HB \(\perp\)AC
DC\(\perp\)AC
=> HB//DC(2) ( Từ vuông góc đến song song)
Từ (1) và (2) => BHCD là hình bình hành
a) Tứ giác BHCDBHCD có:
BH//DCBH//DC (do cùng ⊥AC⊥AC)
CH//BDCH//BD (do cùng ⊥AB⊥AB)
⇒BHCD⇒BHCD là hình bình hành (dấu hiệu nhận biết)
b) Do BHCDBHCD là hình bình hành gọi HD∩BC=I⇒IHD∩BC=I⇒I là trung điểm cạnh HD (1)
Gọi HE∩BC=G,ΔBHEHE∩BC=G,ΔBHE có BGBG vừa là đường cao vừa là trung tuyến nên ΔBHEΔBHE cân đỉnh B
⇒GH=GE⇒G⇒GH=GE⇒G là trung điểm cạnh HEHE (2)
Từ (1) và (2) ⇒IG⇒IG là đường trung bình của ΔHEDΔHED
⇒IG//ED⇒BC//ED⇒IG//ED⇒BC//ED (đpcm)
trực tâm ở cạnh nào hay góc nào bạn?
có trực tâm chính xác sẽ làm dễ hơn