Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a^2+b^2+c^2 -ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a^2+b^2+c^2 -ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
Lời giải:
$a^3+b^3+c^3=3abc$
$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$
$\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$
Hiển nhiên $a+b+c>0$ với mọi $a,b,c$ là độ dài 3 cạnh tam giác.
$\Rightarrow a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Do mỗi số $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c>0$.
$\Rightarrow$ để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
$\Rightarrow ABC$ là tam giác đều.
dễ mà bạn . áp dụng bất đẳng thức cô-si cho ba số không âm ta có:
a^3+b^3+c^3>=3\(\sqrt[3]{a^3b^3c^3}\)=>a^3+b^3+c^3>=3abc.
dấu bằng xảy ra khi a=b=c. vậy nếu a^3+b^3+c^3=3abc thì a=b=c hay tam giac ABC là tam giác đều!!!!!!
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Dấu bằng xảy ra <=> a+b+c=0 hoặc \(a^2+b^2+c^2-ab-ac-bc=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a=b=c
Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
ta có \(\left(a-b\right)^2>=0\) => \(a^2+b^2>=2ab\)
tương tự ta có \(b^2+c^2>=2bc\)
\(c^2+a^2>=2ac\)
cộng từng vế của 3 BĐt cùng chiều ta có \(2\left(a^2+b^2+c^2\right)>=2\left(ab+bc+ca\right)\)
=> \(a^2+b^2+c^2>=ab+bc+ca\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
<=> a=b=c
<=> tam giác ABC là tam giác đều(ĐPCM)
Từ giả thiết suy ra
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu).
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều
Cách của bạn phía trên sai. Bạn đang chứng minh chiều nghịch của bài toán
a+b+c => a+b= -c
=> (a+b)2 = (-c)2
=> a3+b3+3ab(a+b) = -c2
=> a3+b3+c3 = -3ab(a+b)
=> a2+b2+c2 = -3ab(-c) = 3abc
\(a^3+b^3+c^3=3abc< =>a^3+b^3+c^3-3abc=0< =>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
vì a,b,c là độ dài 3 cạnh của tam giác ABC => a,b,c > 0 => a+b+c > 0
=>\(a^2+b^2+c^2-ab-bc-ac=0=>\frac{1}{2}.2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac=0=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
=>(a-b)2+(b-c)2+(c-a)2=0
tổng 3 bt ko âm=0 <=> chúng đều = 0
<=>a-b=b-c=c-a=0
<=>a=b=c
<=>tam giác ABC là tam giác đều
vậy góc ABC=600
Đề thi học kì 1 của tụi mình nè!
Vế trừ vế,ta có:
\(\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
Mà a,b,c là 3 cạnh của tam giác nên \(a+b+c>0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
Đặt đa thức trên là A
\(\Rightarrow A=0\) nên \(2.A=0\)
Phân tích thành hằng đẳng thức,ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
nên \(a=b=c\Rightarrow\) Tam giác trên là tam giác đều.
Trừ vế là sao bạn