Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB>AC
nên BD>CD
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Xét ∆ABD và ∆ACE có: AB = AC (∆ABC cân tại A)
ABDˆ=ACEˆABD^=ACE^ (∆ABC cân tại A)
BD = EC (gt)
Do đó ∆ABD = ∆ACE (c.g.c) ⇒BADˆ=EACˆ⇒BAD^=EAC^
Ta có AEBˆ>Cˆ(AEBˆAEB^>C^(AEB^ là góc ngoài của tam giác ACD)
Cˆ=BˆC^=B^ (∆ABC cân tại A)
Nên AEBˆ>BˆAEB^>B^
∆ABE có AEBˆ>BˆAEB^>B^ => AB > AE
Trên tia đối của tia DA lấy điểm M sao cho DM = DA
Xét ∆DME và ∆DAB có DM = DA, MDEˆ=ADBˆMDE^=ADB^ (đối đỉnh), DE = BD (gt)
Do đó ∆DME = ∆DAB (c.g.c) ⇒ME=AB,DMEˆ=BADˆ⇒ME=AB,DME^=BAD^
Ta có ME > AE. ∆AEM có ME > AE ⇒DAEˆ>DMEˆ⇒DAE^>DME^
Nên DAEˆ>BADˆ=EACˆ.DAE^>BAD^=EAC^.
Vậy trong ba góc BAD, DAE, EAC thì góc DAE lớn nhất.
Trên tia đối của tia EA, lấy điểm F sao cho EA = EF
Khi đó ta có ngay \(\Delta ADE=\Delta FCE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAE}=\widehat{CFE}\) va AD = FC
Ta cũng có \(\Delta ABD=\Delta ACE\left(c-g-c\right)\Rightarrow\widehat{BAD}=\widehat{CAE}\) và AB = AC
Kẻ đường cao AH. Ta thấy ngay DH < AH nên AD < AB hay FC < AC
Xét tam giác AFC có FC < AC nên \(\widehat{CAE}< \widehat{CFA}\) hay \(\widehat{DAE}>\widehat{BAD}\)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đoàn Thanh Quang - Toán lớp 7 - Học toán với OnlineMath
Ta có: ΔABD=ΔACE(c.g.c)ΔABD=ΔACE(c.g.c) vì:
AB=ACAB=AC(cạnh bên ΔABCΔABC cân)
Bˆ=CˆB^=C^(góc đáy)
BD=CE(gt)
=>BADˆ=EACˆ=>BAD^=EAC^ (1)
Trên tia đối AD lấy I sao cho DI=DA.
ΔABDΔABD và ΔIEDΔIED có:
DA=DIDA=DI(cách lấy điểm I)
ADBˆ=IDEˆADB^=IDE^(đối đỉnh)
BD=DEBD=DE(gt)
nên: ΔABDΔABD =ΔIED(cgc)ΔIED(cgc)
suy ra: EI=BAEI=BA
Ta lại có:
AB>AD( Do trong tam giác ABD có ADBˆADB^ tù)
AD=AEAD=AE(cmt)
Nên EI>AE
suy ra: EAIˆ>EIAˆEAI^>EIA^
hay: DAEˆ>EIAˆDAE^>EIA^
mà EIAˆ=BADˆEIA^=BAD^(ΔABD=ΔIEDΔABD=ΔIED)
suy ra: DAEˆ>BADˆDAE^>BAD^(2)
Từ (1) và (2), suy ra:
DAEˆ>BADˆ=EACˆDAE^>BAD^=EAC^(dpcm)
Ta có: ΔABD=ΔACE(c.g.c)ΔABD=ΔACE(c.g.c) vì:
AB=ACAB=AC(cạnh bên ΔABCΔABC cân)
Bˆ=CˆB^=C^(góc đáy)
BD=CE(gt)
=>BADˆ=EACˆ=>BAD^=EAC^ (1)
Trên tia đối AD lấy I sao cho DI=DA.
ΔABDΔABD và ΔIEDΔIED có:
DA=DIDA=DI(cách lấy điểm I)
ADBˆ=IDEˆADB^=IDE^(đối đỉnh)
BD=DEBD=DE(gt)
nên: ΔABDΔABD =ΔIED(cgc)ΔIED(cgc)
suy ra: EI=BAEI=BA
Ta lại có:
AB>AD( Do trong tam giác ABD có ADBˆADB^ tù
AD=AEAD=AE(cmt)
Nên EI>AE
suy ra: EAIˆ>EIAˆEAI^>EIA^
hay: DAEˆ>EIAˆDAE^>EIA^
mà EIAˆ=BADˆEIA^=BAD^(ΔABD=ΔIEDΔABD=ΔIED)
suy ra: DAEˆ>BADˆDAE^>BAD^(2)
Từ (1) và (2), suy ra:
DAEˆ> BADˆ=EACˆDAE^>BAD^=EAC^(ĐPCM)
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
Hình và GT,KL chắc bạn tự làm đc
Xét 2 tam giác:\(\Delta ABD\)và \(\Delta AEC\)
=> \(\Delta ABD\)= \(\Delta ACE\)(c-g-c)
=> \(BÂD=EÂC\)(2 góc tương ứng)
Trên tia AD lấy điểm F sao cho D là trung điểm của AF,ta có \(\Delta ADE=\Delta FDB\)(c.g.c),do đó \(DÂE=DFB\)và AE = BF
Vì \(ÂEC>ÂBC=ÂCB\)vì thế trong \(\Delta AEC\)thì AE > AC.Như vậy trong \(\Delta ABF\)thì BF < AB,suy ra \(BÂD=BFD\)
Vậy \(BÂD\)= góc CAE < góc DAE
~Hok tốt~