Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
c: ΔHBA đồng dạng với ΔABC
=>BH/BA=HA/AC
=>BH*AC=BA*HA
=>BH*AC=BD/2*2*AH=BD*AM
=>BH/AM=BD/AC
=>ΔBHD đồng dạng với ΔAMC
=>HD/MC=BD/AC
=>HD*AC=MC*BD
d: góc AMC=góc MHC+góc HCM
góc AMC=góc BHD
=>góc BHD=góc MHC+góc HCM
=>90 độ+góc MHD=90 độ+góc HCM
=>góc MHD=góc HCM
mà góc MCH+góc HMC=90 độ
nê góc MHD+góc HMC=90 độ
=>MC vuông góc HD
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE