Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C D A B 10cm 6cm
Áp dụng định lý pagota vào tam giác ABC vuông tại A
a, Chứng minh ∆CMB = ∆DNC => N C E ^ = C D N ^
Từ đó chứng minh được C E N ^ = 90 0
b, Ta có A,D,E,M cùng thuộc được tròn đường kính DM
c, Gọi I là trung điểm của CD, chứng minh AI song song với MC
=> ∆ADE cân tại A
=> B,E,D cùng thuộc (A;AB)
Huy làm có gì sai mọi người góp ý nha :3
a
Ta có 2 đường trung trực của các đoạn thẳng AM,AN cắt nhau tại I nên I là tâm đường tròn ngoại tiếp tam giác AMN
b
Hạ đường cao AK. Gọi L đối xứng với A qua K. Suy ra L cố định.Ta sẽ chứng minh tứ giác AMLN nội tiếp. Thật vậy !
Ta dễ có được đường tròn tâm I ngoại tiếp tam giác ALN
Ta có:\(\widehat{AIN}=2\widehat{ALN};\widehat{AIN}=2\widehat{AMN}\Rightarrow\widehat{ALN}=\widehat{AMN}\) nên tứ giác AMLN nội tiếp khi đó đường tròn I luôn đi qua điểm L cố định
Hình tui đã vẽ trong TKHĐ nhé :))
Mình làm ra vở cho bạn rồi nhé. Chữ mình hơi xấu, mong bạn thông cảm.