K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Bạn vẽ hình ra nhé! 
Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau) 
Xét tam giác vuông ADM và tam giác vuông BAH có: 
AD = AB (gt) 
góc DAM = góc ABH (cmt) 
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn) 
=> DM = AH 
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH 
=> DM = EN (cùng bằng AH) 
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE. 
Chúc bạn học giỏi!

tk nha bạn

thank you bạn

(^_^)

2 tháng 1 2018

Do tam giác ABD vuông cân tại A => góc DAM + góc BAH = 90º. Trong tam giác vuông ABH có góc ABH + góc BAH = 90º => góc DAM = góc ABH (cùng phụ với một góc bằng nhau) 
Xét tam giác vuông ADM và tam giác vuông BAH có: 
AD = AB (gt) 
góc DAM = góc ABH (cmt) 
=> tam giác ADM = tam giác BAH (cạnh huyền - góc nhọn) 
=> DM = AH 
Cmtt ta có: tam giác ANE = tam giác CHA => EN = AH 
=> DM = EN (cùng bằng AH) 
Lại có: DM // EN (cùng _|_ AH) mà DM = EN (cmt) => tứ giác DMEN là hình bình hành => MN cắt DE tại trung điểm mỗi đường hay MN đi qua trung điểm của DE. 

30 tháng 7 2019

Ta có: ∠(BAH) +∠(BAD) +∠(DAM) =180o(kề bù)

Mà ∠(BAD) =90o⇒∠(BAH) +∠(DAM) =90o(1)

Trong tam giác vuông AMD, ta có:

∠(AMD) =90o⇒∠(DAM) +∠(ADM) =90o(2)

Từ (1) và (2) suy ra: ∠(BAH) =∠(ADM)

Xét hai tam giác vuông AMD và BHA, ta có:

∠(BAH) =∠(ADM)

AB = AD (gt)

Suy ra: ΔAMD= ΔBHA(cạnh huyền, góc nhọn)

Vậy: AH = DM (hai cạnh tương ứng) (3)

9 tháng 4 2016

D B C E N M A H

                                          a,   có góc ADM+DAM=90độ

                                             có góc DAM+DAB+BAH=90độ

                                             =>DAM+BAH=90 độ=>BAH=ADM

có DAM+ADM=90 độ

có BAH+ABH=90 độ

mà ADM=BAH=>ABH=DAM

xét tg DAM và tg BAH

     AB=AD

góc ADM=BAH     => tg DAM=tg ABH(g.c.g)

góc DAM=ABH

=> DM=AH(2 cạnh t/ứ)

b, nối D,E 

 xét tg NEA và tg AHC giống ý a, rùi có NE=AH mà DM=AH => DM=NE

gọi giao điểm của DE và NA là T => NTE=DTM(đối đỉnh)

Xét tg MDT và tg NET

NE=DM

NET=TDM(2 góc kia = nhau thì góc này =)                        => tgMTD=tgNET(g.c.g)

ENT=DMT(=90 độ)

=> DT=ET(2 cạnh t.ứ)=> MN đi qua trung điểm của DE

c, có EAC=DAB(=90độ)=> EAC+BAC=DAB+BAC(1)

DA=BA(2),     CA=EA(3)

từ 1,2 3 => 2 tg đó = nhau

30 tháng 7 2018

Ta có: ∠(HAC) +∠(CAE) +∠(EAN) =180o(kề bù)

Mà ∠(CAE) =90o⇒∠(HAC) +∠(EAN) =90o (4)

Trong tam giác vuông AHC, ta có:

∠(AHC) =90o⇒∠(HAC) +∠(HCA) =90o (5)

Từ (4) và (5) suy ra: ∠(HCA) =∠(EAN) ̂

Xét hai tam giác vuông AHC và ENA, ta có:

∠(AHC) =∠(ENA) =90o

AC = AE (gt)

∠(HCA) =∠(EAN) ( chứng minh trên)

Suy ra : ΔAHC= ΔENA(cạnh huyền, góc nhọn)

Vậy AH = EN (hai cạnh tương ứng)

Từ (3) và (6) suy ra: DM = EN

Vì DM ⊥ AH và EN ⊥ AH (giả thiết) nên DM // EN (hai đường thẳng cùng vuông góc với đường thẳng thứ ba)

Gọi O là giao điểm của MN và DE

Xét hai tam giác vuông DMO và ENO, ta có:

∠(DMO) =∠(ENO) =90o

DM= EN (chứng minh trên)

∠(MDO) =∠(NEO)(so le trong)

Suy ra : ΔDMO= ΔENO(g.c.g)

Do đó: DO = OE ( hai cạnh tương ứng).

Vậy MN đi qua trung điểm của DE

Giải sách bài tập Toán 7 | Giải sbt Toán 7

8 tháng 9 2017

1) Vẽ hình..

2) Bài Làm

a, Ta có: BAHˆ+DAMˆ=90oBAH^+DAM^=90o;BAHˆ+ABHˆ=90oBAH^+ABH^=90o

⇒⇒DAMˆ=ABHˆDAM^=ABH^

Xét tam giác ADM vuông tại M và tam giác BAH vuông tại H ta có:

AD=BA(gt);DAMˆ=ABHˆDAM^=ABH^ (cmt)

Do đó tam giác ADM=tam giác BAH(cạnh huyền - góc nhọn)
=> DM=AH(cặp cạnh tương ứng) (đpcm)

b, Ta có: HACˆ+NAEˆ=90oHAC^+NAE^=90o;HACˆ+ACHˆ=90oHAC^+ACH^=90o

⇒⇒ NAEˆ=ACHˆNAE^=ACH^

Xét tam giác AEN vuông tại N và tam giác CAH vuông tại H ta có:

AE=CA(gt); NAEˆ=ACHˆNAE^=ACH^ (cmt)

Do đó tam giác AEN=tam giác CAH(cạnh huyền - góc nhọn)

=> EN=AH(cặp cạnh tương ứng)

mà DM=AH(cm câu a)

nên EN=DM

Gọi giao điểm của MN và DE là I (bạn tự thêm điểm trên hình nha mình quên)

Ta có: 90o−DIMˆ=90o−EINˆ→IDMˆ=IENˆ90o−DIM^=90o−EIN^→IDM^=IEN^

Xét tam giác DMI và tam giác ENI ta có:

DMIˆ=ENIˆ(=90o)DMI^=ENI^(=90o);DM=EN(đã cm);MDIˆ=NEIˆMDI^=NEI^(cmt)

Do đó tam giác DMI=tam giác ENI(g.c.g)

=> DI=EI(cặp cạnh tương ứng)

=> MN đi qua trung điểm của DE(đpcm)

8 tháng 9 2017

Xét tam giác AND và BHA có:

DA = AB ( gt )

DNA = AHB ( = 90độ )

NDA=BAH(cùng phụ với DAN)

=>tam giác AND=BHA(ch-gn)

=>DN=AH nối A với E.giao diem giữa MNvà DE là O

vì DM VUÔNG GÓC AH EN VUÔNG GÓC AH =>DM song song

EN =>góc MEO=MDO XÉT TAM GIÁC MEA VÀ HAC CÓ

EA=AC

AME=AHC

MAE=ACH

=>TAM GIÁC MEA=HAC

=>ME=AH MÀ DM=AH

=>ME=DM

XÉT TAM GIÁC DNO VÀ EMO CÓ

DN=ME

DMN=ENM

EDM=NEO

=>TAM GIÁC DNO=NEO=>DO=OE

MN đi qua trung điểm DE