Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC. Các điểm D, E, F lần lượt thuộc AB, AC, BC. chứng minh rằng: a) diện tích ADE trên diện tích ABC bằng AD*AE trên AB*AC . b) Trong 3 tam giác ADE, BDF, CEF tồn tại 1 tam giác có diện tích không vượt quá 1/4 diện tích ABC. Khi nào cả 3 tam giác đó cùng có diện tích = 1/4 diện tích ABC
A B C M D E
Ta thấy ngay tứ giác ADME nội tiếp vì \(\widehat{DAE}+\widehat{DME}=180^o\)
Vậy thì \(\widehat{MDE}=\widehat{MAE}\) (Hai góc nội tiếp)
Mà do M là trung điểm BC nên MB = MA = MC hay \(\widehat{MCA}=\widehat{MAE}\)
Vậy \(\widehat{MDE}=\widehat{MCE}\)
Ta có \(S_{DME}=\frac{1}{2}.DM.ME=\frac{1}{2}.DM.DM.tan\widehat{MDE}=\frac{1}{2}.DM^2.tan\widehat{MCE}\)
Do góc C không thay đổi nên \(tan\widehat{MCE}\) không đổi.
Vậy \(S_{MDE}min\Leftrightarrow DMmin\)
Ta thấy DM là hình xiên, vậy DM nhỏ nhất khi nó là đường vuông góc.
Tóm lại: diện tích tam giác DME nhỏ nhất khi D, E lần lượt là chân đường vuông góc hạ từ M xuống AB và AC.
Từ M kẻ \(MH\perp AC\Rightarrow MH=AM.sinA\)
\(S_{AMN}=\dfrac{1}{2}MH.AB=\dfrac{1}{2}AM.AN.sinA\)
Mà góc A cố định \(\Rightarrow S_{min}\) khi \(AM.AN\) đạt min
Qua B, C lần lượt kẻ các đường thẳng song song d, cắt AD tại E và F
\(\Delta BDE=\Delta CDF\left(g.c.g\right)\Rightarrow DE=DF\)
Talet: \(\dfrac{AB}{AM}=\dfrac{AE}{AI}\) ; \(\dfrac{AC}{AN}=\dfrac{AF}{AI}\)
\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AE+AF}{AI}=\dfrac{\left(AD-DE\right)+\left(AD+DF\right)}{AI}=\dfrac{2AD}{AI}\)
Do A; I; D cố định \(\Rightarrow\dfrac{2AD}{AI}\) cố định
\(\dfrac{2AD}{AI}=\dfrac{AB}{AM}+\dfrac{AC}{AN}\ge2\sqrt{\dfrac{AB.AC}{AM.AN}}\Rightarrow AM.AN\ge\dfrac{AB.AC.AI^2}{AD^2}\)
Đẳng thức xảy ra khi và chỉ khi \(\dfrac{AB}{AM}=\dfrac{AC}{AN}\Rightarrow d||BC\) theo Talet đảo