Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Bạn tham khảo bài làm của mình ở dưới đây nha !
Xin lỗi bạn vì không viết hẳn ra được vì 1 trước lúc đó mình đang hok thì bị sập máy do hết pin nên làm lại ra giấy cho nhanh ,bạn tham khảo nha !
1) Ta có: \(\frac{CE}{EA}=\frac{2}{5}\Rightarrow\frac{EA}{CE}=\frac{5}{2}\Rightarrow\frac{EA}{CE+EA}=\frac{5}{2+5}\Rightarrow\frac{EA}{AC}=\frac{5}{7}\); \(\frac{AF}{FB}=\frac{2}{5}\Rightarrow\frac{AF}{AF+FB}=\frac{2}{2+5}\Rightarrow\frac{AF}{AB}=\frac{2}{7}\)
\(\Rightarrow\frac{S_{AEF}}{S_{AFC}}=\frac{AE}{AC}=\frac{5}{7}\Rightarrow S_{AEF}=\frac{5}{7}S_{AFC}\)và \(\frac{S_{AFC}}{S_{ABC}}=\frac{AF}{AB}=\frac{2}{7}\Rightarrow S_{AFC}=\frac{2}{7}S_{ABC}\)
\(\Rightarrow S_{AEF}=\frac{5}{7}.\frac{2}{7}S_{ABC}=\frac{10}{49}S_{ABC}\)
Tương tự, ta có: \(S_{DEC}=\frac{10}{49}S_{ABC}\); \(S_{DFB}=\frac{10}{49}S_{ABC}\)
\(\Rightarrow S_{DEF}=S_{ABC}-S_{AEF}-S_{DEC}-S_{DFB}=S_{ABC}-\frac{30}{49}S_{ABC}=\frac{19}{49}S_{ABC}\)
2) Gọi N là trung điểm của DM
Kẻ \(EM//AB\left(M\in BC\right)\), gọi O là giao điểm của AM và EF, khi đó \(\frac{EM}{AB}=\frac{EC}{AC}=\frac{MC}{BC}\)(Thales)
Mặt khác từ giả thiết suy ra \(\frac{BD}{BC}=\frac{CE}{AC}=\frac{AF}{AB}\)
Từ đó ta có được BD = MC, EM = AF
EM = AF và EM // AF nên tứ giác AFME là hình bình hành => O là trung điểm của EF và AM
Ta có: \(\hept{\begin{cases}BD=MC\left(cmt\right)\\DN=MN\end{cases}}\Rightarrow BN=NC\)
Tam giác ADM có hai trung tuyến AN và DO cắt nhau tại G nên G là trọng tâm => G thuộc AN và \(AG=\frac{2}{3}AN\), G thuộc DO và \(DG=\frac{2}{3}DO\)
\(\Delta ABC\)có G thuộc trung tuyến AN và \(AG=\frac{2}{3}AN\)nên G là trọng tâm của tam giác (1)
\(\Delta DEF\)có G thuộc trung tuyến DO và \(DG=\frac{2}{3}DO\) nên G là trọng tâm của tam giác (2)
Từ (1) và (2) suy ra hai tam giác ABC, DEF có cùng trọng tâm G (đpcm)