Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M
a) Chứng minh AM vuông góc với BC
\(\Delta ABC\) có AB = AC \(\Rightarrow\Delta ABC\) cân tại A
\(\Rightarrow\) AM là đường trung tuyến đồng thời là đường cao
Hay AM \(\perp\) BC.
b) Chứng minh: AC // BN
Xét hai tam giác vuông AMC và NMB có:
MA = MN (gt)
MB = MC (gt)
\(\Rightarrow\Delta AMC=\Delta NMB\left(hcgv\right)\)
\(\Rightarrow\) \(\widehat{MAC}=\widehat{MNB}\)
Mà hai góc này ở vị trí so le trong
\(\Rightarrow\) AC // BN (đpcm).
(Bạn tự vẽ hình nhé)
a/ \(\Delta AMK\)và \(\Delta BMC\)có: AM = BM (M là trung điểm của AB)
\(\widehat{AMK}=\widehat{BMC}\)(đối đỉnh)
MK = MC (gt)
=> \(\Delta AMK\)= \(\Delta BMC\)(c. g. c) (đpcm)
b/ Ta có: \(\Delta AMK\)= \(\Delta BMC\)(cm câu a)
=> \(\widehat{K}=\widehat{C}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => KA // BC (đpcm)
c/ Giả sử K, A, H không thẳng hàng (*)
\(\Delta ANH\)và \(\Delta CNB\)có:
AN = NC (N là trung điểm của AC)
\(\widehat{ANH}=\widehat{BNC}\)(đối đỉnh)
NH = NB (gt)
=> \(\Delta ANH\)= \(\Delta CNB\)(c. g. c)
=> \(\widehat{H}=\widehat{B}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => AH // BC (đpcm)
(*) => Có hai đường thẳng KA và AH cùng song song với BC (Vô lý! Trái với tiên đề Ơclit)
=> (*) sai
=> K, A, H thẳng hàng (đpcm)
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE