K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

a, Vì AE=2AB

=>AE/AB=1/2

suy ra: A là trọng tâm của tam giác CDE

b,Gọi F là trung điểm của DE

=>CF là trung tuyến của tam giác CDE

mà A là trọng tâm của tam giác CDE

suy ra:C;A;F thẳng hàng

=>CA đi qua trung điểm của DE

=>đpcm

16 tháng 4 2018

Tao ko bit

21 tháng 4 2018

de lam cac ban

...........

26 tháng 12 2017

A B C N M

a) Chứng minh AM vuông góc với BC

\(\Delta ABC\) có AB = AC \(\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow\) AM là đường trung tuyến đồng thời là đường cao

Hay AM \(\perp\) BC.

b) Chứng minh: AC // BN

Xét hai tam giác vuông AMC và NMB có:

MA = MN (gt)

MB = MC (gt)
\(\Rightarrow\Delta AMC=\Delta NMB\left(hcgv\right)\)

\(\Rightarrow\) \(\widehat{MAC}=\widehat{MNB}\)

Mà hai góc này ở vị trí so le trong

\(\Rightarrow\) AC // BN (đpcm).

13 tháng 12 2017

(Bạn tự vẽ hình nhé)

a/ \(\Delta AMK\)và \(\Delta BMC\)có: AM = BM (M là trung điểm của AB)

\(\widehat{AMK}=\widehat{BMC}\)(đối đỉnh)

MK = MC (gt)

=> \(\Delta AMK\)\(\Delta BMC\)(c. g. c) (đpcm)

b/ Ta có:  \(\Delta AMK\)\(\Delta BMC\)(cm câu a)

=> \(\widehat{K}=\widehat{C}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => KA // BC (đpcm)

c/ Giả sử K, A, H không thẳng hàng (*)

\(\Delta ANH\)và \(\Delta CNB\)có:

AN = NC (N là trung điểm của AC)

\(\widehat{ANH}=\widehat{BNC}\)(đối đỉnh)

NH = NB (gt)

=>  \(\Delta ANH\)\(\Delta CNB\)(c. g. c)

=> \(\widehat{H}=\widehat{B}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => AH // BC (đpcm)

(*) => Có hai đường thẳng KA và AH cùng song song với BC (Vô lý! Trái với tiên đề Ơclit)

=> (*) sai

=> K, A, H thẳng hàng (đpcm)

15 tháng 12 2017

ok thank bạn

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE