Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAH vuông tại H và ΔCDH vuông tại H có
HA=HD
CH chung
Do đó: ΔCAH=ΔCDH
Bn tự vẽ hình nha:GT:tam giác ABC,góc A<90 độ,góc B <90 độ,góc C <90 độ,AH vuông góc với BC,HA=AD
KL:viết lại câu hỏi
a)Xét tam giác ABH và tam giác DBH có:
HA=HD(gt)
Góc AHB= góc BHD=90 độ
AD chung
=>tam giác ABH= tam giác DBH( c-g-c)
=>góc ABH= góc HBD
=> BC là tia phân giác của góc ABD
Xét tam giác ACH và tam giác DCH có:
AD chung
Góc AHC= góc CHD=90 độ
HA=HD(gt)
=>tam giác ACH= tam giác HCD
=>góc ACH= góc HCD
=>CB là tia phân giác của góc ACD
b)Xét tam giác CAH và tam giác CDH có:
AH=HD(gt)
góc AHC=góc CHD=90 độ
HC chung
=>tam giác CAH = tam giác CDH (c-g-c)
=>CA=CD
Xét tam giác BDH và tam giác BAH có:
BH chung
góc DHB=góc AHB=90 độ
HA=HD(gt)
=>tam giác BDH = tam giác BAH (c-g-c)
MK LÀM XONG RỒI ĐÓ.KẾT BN VS MK NHA!
a) Sửa đề: Chứng minh ABH = DBH
Giải:
Xét hai tam giác vuông: ∆ABH và ∆DBH có:
BH là cạnh chung
AH = DH (gt)
⇒ ∆ABH = ∆DBH (hai cạnh góc vuông)
⇒ ∠ABH = ∠DBH (hai góc tương ứng)
⇒ BH là tia phân giác của ∠ABD
b) Do DM // AB (gt)
⇒ ∠MDH = ∠HAB (so le trong) (1)
Do ∆ABH = ∆DBH (cmt)
⇒ ∠HAB = ∠HDB (hai góc tương ứng) (2)
Từ (1) và (2) ⇒ ∠MDH = ∠HDB
Xét hai tam giác vuông: ∆DHM và ∆DHB có:
DH là cạnh chung
∠MDH = ∠HDB (cmt)
⇒ ∆DHM = ∆DHB (cạnh góc vuông - góc nhọn kề)
⇒ ∠DHM = ∠DHB (hai góc tương ứng)
Mà ∠DHM + ∠DHB = 180⁰ (kề bù)
⇒ ∠DHM = ∠DHB = 180⁰ : 2 = 90⁰
⇒ DH ⊥ BM (3)
Do ∆DHM = ∆DHB (cmt)
⇒ HM = HB
⇒ H là trung điểm của BM (4)
Từ (3) và (4) ⇒ HD là đường trung trực của BM
⇒ AD là đường trung trực của BM
c) Do AD là đường trung trực của BM (cmt)
⇒ AD ⊥ CH
Do DK // AB (gt)
⇒ DK ⊥ AC (AB ⊥ AC)
∆ACD có:
CH là đường cao (CH ⊥ AD)
DK là đường cao thứ hai (DK ⊥ AC)
⇒ AM là đường cao thứ ba
Mà AM ⊥ CN tại N
⇒ AN là đường cao thứ ba của ∆ACD
⇒ C, N, D thẳng hàng
a) Xét ΔABH vuông tại H và ΔDBH vuông tại H có
BH chung
HA=HD(gt)
Do đó: ΔABH=ΔDBH(hai cạnh góc vuông)
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)
mà tia BH nằm giữa hai tia BA,BD
nên BH là tia phân giác của \(\widehat{ABD}\)(đpcm)
b) Xét ΔACH vuông tại H và ΔDCH vuông tại H có
CH chung
AH=DH(gt)
Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)
Suy ra: CA=CD(hai cạnh tương ứng)
Ta có: ΔABH=ΔDBH(cmt)
nên BA=BD(hai cạnh tương ứng)
Xét ΔABC và ΔDBC có
BA=BD(cmt)
BC chung
CA=CD(cmt)
Do đó: ΔABC=ΔDBC(c-c-c)
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Ta có: \(\widehat{ABG}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABG}=\widehat{ACE}\)
Xét ΔABG và ΔACE có
AB=AC
\(\widehat{ABG}=\widehat{ACE}\)
BG=CE
Do đó: ΔABG=ΔACE
=>AG=AE
=>ΔAGE cân tại A
c: Xét ΔHAB vuông tại H và ΔKAC vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)(ΔABG=ΔACE)
Do đó: ΔHAB=ΔKAC
=>AH=AK
Xét ΔAGE có \(\dfrac{AH}{AG}=\dfrac{AK}{AE}\)
nên HK//GE
=>HK//BC
a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:
\(AH=DH\left(gt\right)\)
BH là cạnh chung
\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )
A)Xét t/giác AHB và t/giác DHB có
AH=AD(gt)
Góc AHB=góc DHB=900
BH là cạnh chung
Suy ra t/giác AHB=t/giác DHB(c-g-c)
B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)
Suy ra :BC là tia phân giác của góc ABD
C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N
AM=FM(gt)
Góc AHM= góc FMN(2 góc đối đỉnh)
Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)
Suy ra AH=NF (2 cạnh tương ứng)
Mà AH=HD (gt)
Suy ra NF=HD
Chúc bn hc tốt
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
b: Ta có: ΔABH=ΔDBH
nên BA=BD
Ta có: ΔACH=ΔDCH
nên CA=CD
c: Ta có: ΔAHC vuông tại H
nên \(\widehat{HAC}+\widehat{HCA}=90^0\)
\(\Leftrightarrow\widehat{CAD}=45^0\)
hay \(\widehat{ADC}=45^0\)