K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B D H C

a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:

\(AH=DH\left(gt\right)\)

BH là cạnh chung

\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)

\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)

b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )

21 tháng 3 2020

A)Xét t/giác AHB và t/giác DHB có

    AH=AD(gt)

  Góc AHB=góc DHB=900

  BH là cạnh chung

Suy ra t/giác AHB=t/giác DHB(c-g-c)

B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)

Suy ra :BC là tia phân giác của góc ABD

C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N 

  AM=FM(gt)

  Góc AHM= góc FMN(2 góc đối đỉnh)

Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)

Suy ra AH=NF (2 cạnh tương ứng)

Mà AH=HD (gt)

Suy ra NF=HD

Chúc bn hc tốt

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: XétΔABC có \(\widehat{B}>\widehat{C}\)

nên AB<AC
XétΔABC có AB<AC
mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

Xét ΔDBC có 

HB là hình chiếu của DB trên BC

HC là hình chiếu của DC trên BC

mà HB<HC

nên DB<DC

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = ME (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB = CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{BHA}=\widehat{BHD}=90^0\) 

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`=> AB = BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD = CE`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`HA = HD (g``t)`

\(\widehat{AHM}=\widehat{DHM}=90^0\)  

`HM` chung

`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`

`=> AM = DM (2` cạnh tương ứng `)`

Xét Tam giác `AMD` có: `AM = DM`

`->` Tam giác `AMD` là tam giác cân.

 

loading...

Mình bổ sung thêm hình ạ ._. nãy k sửa kịp á.

a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có

CH chung

HA=HM

=>ΔCHA=ΔCHM

=>góc ACH=góc MCH

=>CH là phân giác của góc ACM

b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có

HA=HM

góc HAC=góc HDM

=>ΔHAC=ΔHMD

=>HC=HD

=>AM là trung trực của CD

29 tháng 12 2021

a: Xét ΔCAH vuông tại H và ΔCDH vuông tại H có

HA=HD

CH chung

Do đó: ΔCAH=ΔCDH

a: Xet ΔBAM có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAM cân tại B

=>BA=BM

b: góc BAO+góc CAO=90 độ

góc BOA+góc OAH=90 độ

mà góc CAO=góc OAH

nên góc BAO=góc BOA

nên ΔBAO cân tại B

=>BA=BO=BM

=>BO=BM

Xét ΔBAC và ΔBMC có

BA=BM

góc ABC=góc MBC

BC chung

=>ΔBAC=ΔBMC

=>góc BMC=90 độ

=>OK vuông góc BM

góc KOM+góc BOK=góc BOM

góc KMO+góc BMH=góc BMO

mà góc BOK=góc BMH; góc BOM=góc BMO

nên góc KOM=góc KMO

=>ΔKMO cân tại K

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

a: \(\widehat{C}=90^0-60^0=30^0\)

Xét ΔABC có \(\widehat{C}< \widehat{B}\)

nên AB<AC

Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó: ΔAHC=ΔDHC

c: Xét ΔBAC và ΔBDC có 

CA=CD

\(\widehat{ACB}=\widehat{DCB}\)

CB chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)