\(a)\frac{AK^2}{AB^2}=\frac{AE.EK}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

A B C H K E

a) Xét 2 Δ: Δ AEC và Δ AKB có:

\(\hept{\begin{cases}\widehat{KAB}=\widehat{EAC}\left(chung\right)\\\widehat{AKB}=\widehat{AEC}=90^0\end{cases}}\)

=> Δ AEC ~ Δ AKB (g.g)

=> \(\frac{AK}{AE}=\frac{AB}{AC}\)

Từ đó ta dễ dàng CM được: Δ AKE ~ Δ ABC (c.g.c)

=> \(\frac{AK}{AB}=\frac{AE}{AC}=\frac{EK}{BC}\Rightarrow\left(\frac{AK}{AB}\right)^2=\frac{AE.EK}{AC.BC}\)

b) Từ phần a có 2 Δ đồng dạng thì ta có:

\(\frac{S_{AKE}}{S_{ABC}}=\left(\frac{AK}{AB}\right)^2\) mà xét trong Δ vuông AKB vuông tại K có AB là cạnh huyền, AK là cạnh góc vuông kề ^A nên

=> \(\frac{S_{AKE}}{S_{ABC}}=\left(\frac{AK}{AB}\right)^2=\cos^2A\)

c) Tương tự b ta hoàn toàn chứng minh được:\(\frac{S_{BHE}}{S_{ABC}}=\cos^2B\) và \(\frac{S_{CKH}}{S_{ABC}}=\cos^2C\)

Thay vào vế trái ta được:

\(VT=1-\frac{S_{AEK}+S_{BHE}+S_{CHK}}{S_{ABC}}=\frac{S_{ABC}-S_{AKE}-S_{BHE}-S_{CHK}}{S_{ABC}}=\frac{S_{HKE}}{S_{ABC}}\)

30 tháng 10 2022

a: 

Xét tứ giác BLKC có góc BLC=góc BKC=90 độ

nên BLKC là tứ giác nội tiếp

=>góc ALK=góc ACB

=>ΔALK đồng dạng với ΔACB

=>AL/AC=AK/AB=LK/BC

 

\(\left(\dfrac{AK}{AB}\right)^2=\dfrac{AK}{AB}\cdot\dfrac{AK}{AB}=\dfrac{AL}{AC}\cdot\dfrac{BK}{BC}\)

b: \(\dfrac{S_{AKL}}{S_{ABC}}=\left(\dfrac{AK}{AB}\right)^2=\dfrac{AL\cdot BK}{AC\cdot BC}\)

6 tháng 7 2016

a. Ta có : \(\frac{S_{AEF}}{S_{ABE}}=\frac{AF}{AB};\frac{S_{AEB}}{S_{ABC}}=\frac{AE}{AC}\)

Như vậy \(\frac{S_{AEF}}{S_{ABC}}=\frac{AF}{AB}.\frac{AE}{AC}=\frac{AE}{AB}.\frac{AF}{AC}=cosA.cosA=cos^2A.\)

Từ đó ta có : \(S_{AEF}=S_{ABC}.cos^2A\)

b. Tương tự phần a ta có : \(S_{BEF}=S_{ABC}.cos^2B\)\(S_{CEF}=S_{ABC}.cos^2C\)

Như vậy \(S_{DEF}=S_{ABC}-S_{AEF}-S_{BEF}-S_{CEF}\)

Từ đó ta có: \(\frac{S_{DEF}}{S_{ABC}}=1-\left(cos^2A+cos^2B+cos^2C\right)\)

Chúc em học tốt :)))

6 tháng 7 2016

minh k bit

15 tháng 10 2019

H F D E A B C

a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)

SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A   (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))

b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC

=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC

7 tháng 8 2018

A B C H I K

a)

Ta có:

Tam giác AKC vuông tại K \(\Rightarrow sinA=\frac{KC}{AC}\)

\(VT=S_{ABC}=\frac{1}{2}.AB.CK=\frac{1}{2}.AB.\left(AC.\frac{KC}{AC}\right)=\frac{1}{2}.AB.AC.sinA=VP\)(đpcm)

b)

\(\left(1-cos^2A-cos^2B-cos^2C\right).S_{ABC}\)

\(=\left(1-\frac{KC^2}{AC^2}-\frac{BI^2}{AB^2}-\frac{AH^2}{BC^2}\right).S_{ABC}\)

\(=\left[\left(1-\frac{AH^2}{BC^2}\right)-\left(\frac{KC^2}{AC^2}+\frac{BI^2}{AB^2}\right)\right].S_{ABC}\)

\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{AB^2.KC^2-AC^2.BI^2}{AB^2.AC^2}\right).S_{ABC}\)

\(=\left(\left(1-\frac{AH^2}{BC^2}\right)-\frac{S^2_{ABC}-S^2_{ABC}}{AB^2.AC^2}\right).S_{ABC}\)

\(=\left(1-\frac{AH^2}{BC^2}\right).S_{ABC}=S_{ABC}-\frac{AH^2}{BC^2}.S_{ABC}\)