Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M A N B C K E
Xét \(\Delta AMKvà\Delta BKCcó:\)
KA=KB
góc MKA=góc BKC
KM=KC
\(\Rightarrow\Delta AMK=\Delta BCK\left(c-g-c\right)\)
\(\Rightarrow\)AM=BC (1)
\(\Rightarrow\)MA//BC (góc M so le trong với góc C) (3)
Xét \(\Delta AENvà\Delta BECcó:\)
EA=EC
góc AEN=góc BEC
EN=EB
\(\Rightarrow\Delta AEN=\Delta CEB\left(c-g-c\right)\)
\(\Rightarrow\)NA=BC (2)
\(\Rightarrow\)NA//BC (góc N so le trong với góc C) (4)
Từ (1) và (2) có: M,A,N thẳng hàng
Từ (3) và (4) có: AM=AN
Hình tự vẽ.
Xét tam giác AKM và tam giác BKC có:
KB=KA(K là trđ AB)
^AKM=^BKC(đối đỉnh)
KM=KC(gt)
=>Tam giác AKM=tam giác BKC(c.g.c)
=>^MAK=^KBC(hai góc tương ứng)
Mà hai góc ở vị trí so le trong
=>AM//BC(1)
=>AM=BC(hai cạnh tương ứng)(*)
Xét tam giác AEN và tam giác CEB có:
EA=EC(E là trđ AC)
^AEN=^CEB(đối đỉnh)
EB=EN(gt)
=>Tam giác AEN=tam giác CEB(c.g.c)
=>^ANE=^EBC(hai góc tương ứng)
Mà hai góc ở vị trí so le trong
=>AN//BC(2)
=>AN=BC(hai cạnh tương ứng)(**)
Từ (1) và (2)
=>AM trùng AN
=>M,A,N thẳng hàng
Từ (*) và (**)
=>AM=AN
=>đpcm
Xét ΔAKM và ΔBKC ta có:
AK = BK (Vì K là trung điểm AB)
∠(AKM) =∠(BKC) (đối đỉnh)
KM=KC (giả thiết)
Suy ra: ΔAKM = ΔBKC(c.g.c)
⇒AM =BC (hai cạnh tương ứng)
Và ∠(AMK) =∠(BCK) (2 góc tương ứng)
Suy ra: AM // BC ( vì có cặp góc so le trong bằng nhau)
Tương tự: ΔAEN= ΔCEB(c.g.c)
⇒ AN = BC (2 cạnh tương ứng)
Và ∠(EAN) =∠(ECB) (2 góc tương ứng)
Suy ra: AN // BC (vì có cặp góc so le trong bằng nhau)
Ta có: AM // BC và AN // BC nên hai đường thẳng AM và AN trùng nhau hay A,M,N thẳng hàng (1)
Lại có: AM = AN ( vì cùng bằng BC) (2)
Từ (1) và (2) suy ra: A là trung điểm của MN
Xét tứ giác AMBC có
K là trung điểm của AB
K là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM=BC(1)
Xét tứ giác ABCN có
E là trung điểm của AC
E là trung điểm của BN
Do đó: ABCN là hình bình hành
Suy ra: BC=AN(2)
Từ (1) và (2) suy ra AM=AN