K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔAKM và ΔBKC ta có:

AK = BK (Vì K là trung điểm AB)

∠(AKM) =∠(BKC) (đối đỉnh)

KM=KC (giả thiết)

Suy ra: ΔAKM = ΔBKC(c.g.c)

⇒AM =BC (hai cạnh tương ứng)

Và ∠(AMK) =∠(BCK) (2 góc tương ứng)

Suy ra: AM // BC ( vì có cặp góc so le trong bằng nhau)

Tương tự: ΔAEN= ΔCEB(c.g.c)

⇒ AN = BC (2 cạnh tương ứng)

Và ∠(EAN) =∠(ECB) (2 góc tương ứng)

Suy ra: AN // BC (vì có cặp góc so le trong bằng nhau)

Ta có: AM // BC và AN // BC nên hai đường thẳng AM và AN trùng nhau hay A,M,N thẳng hàng (1)

Lại có: AM = AN ( vì cùng bằng BC) (2)

Từ (1) và (2) suy ra: A là trung điểm của MN

18 tháng 11 2016

Xét tam giác AKM và tam giác BKC có:

AK = BK (K là trung điểm của AB)

AKM = BKC ( 2 góc đối đỉnh)

KM = KC (gt)

=> Tam giác AKM = Tam giác BKC (c.g.c)

=> AM = BC (2 cạnh tương ứng) (1)

AMK = BCK (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AM // BC (2)

Xét tam giác AEN và tam giác CEB có:

AE = CE (E là trung điểm của AC)

AEN = CEB (2 góc đối đỉnh)

EN = EB (gt)

=> Tam giác AEN = Tam giác CEB (c.g.c)

=> AN = CB (2 cạnh tương ứng) (3)

ANE = CBE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AN // CB (4)

Từ (1) và (3)

=> AM = AN (5)

Từ (2) và (4)

=> A, M, N thẳng hàng (6)

Từ (5) và (6)

=> A là trung điểm của MN

18 tháng 11 2016

Bạn không nên đánh số nhiều quá sẽ rối bài.

 

18 tháng 12 2020

Mình giả bài này rồi nhé, định bào bạn vào TK mình lục nhưng thôi tại mình cung đang rảnh:vv

+Xét \(\Delta AEN\) và \(\Delta CEB:\)

AE=CE(gt)

EN=EB(gt)

\(\widehat{AEN}=\widehat{CEB}\) (2 góc đối đỉnh)

=> \(\Delta AEN=\Delta CEB\left(c-g-c\right)\)

=> AN=CB(2 cạnh t/ứ)(1)

+Xét \(\Delta AKN\) và \(\Delta BKC:\)

AK=BK(gt)

MK=CK(gt)

\(\widehat{AKM}=\widehat{BKC}\) (2 góc đối đỉnh)

=> \(\Delta AKM=\Delta BKC\left(c-g-c\right)\)

=> AM=BC(2 cạnh t/ứ)(2)

Từ (1) và (2) suy ra: AM=AN (3)

Ta có: \(\left\{{}\begin{matrix}\widehat{MAK}=\widehat{CBK}\left(\Delta MAK=\Delta CKB\right)\\\widehat{NAE}=\widehat{BCE}\left(\Delta NAE=\Delta BCE\right)\end{matrix}\right.\)

Mà:  \(\widehat{CBK}+\widehat{BAC}+\widehat{BCE}=180^o\)

\(\widehat{MAK}+\widehat{BAC}+\widehat{NAE}=180^o\)

=> M, A, N thẳng hàng (4)

Từ (3) và (4) suy ra: A là trung điểm của MN

27 tháng 12 2020

cảm ơn bạn thật sự ạ !!! <3 

 

13 tháng 12 2017

Cho tam giác ABC có K là trung điểm của AB, E là trung điểm của AC. Trên tia đối của tia KC lấy M sao cho KM = KC. Trên tia đối của tia EB lấy N sao cho EN = EB 

CHỨNG MINH: A là trung điểm của MN

5 tháng 8 2018

Trả lời:

Mình ghi các bước giải nha!!

B1:  Xét \(\Delta MAK\)và \(\Delta CBK\)

\(\Rightarrow MA=BC\)( 2 cạnh tương ứng )

Mà \(AMKvàKCB\left(SLT\right)\)

\(\Rightarrow AM//BC\)

B2: Xét \(\Delta NAE\)và \(\Delta BCE\)

 \(\Rightarrow AN=BC\) ( 2 cạnh tương ứng )

Mà.........( tương tự như phần trên)

B3: Do \(AM//BC\) và \(AN//BC\) \(\left(CMT\right)\)

\(\Rightarrow M;A;N\) thẳng hàng

mà   \(AM=BC;AN=BC\)

\(\Rightarrow\) \(AM=AN\)

Hay A là trung điểm của \(MN\)

~ học tốt ~

13 tháng 12 2017

Do tam giác AKM=tam giác BKC

=> AM=BC, tam giác KAM=  tam giác KBCsuy ra AM//BC

Do tam giác AEN=tam giác CEBsuy ra AN=BC, AN=BC

DoAM//BC, AN//BCsuy ra M,A,N thẳng hàng(1)

AM=BC, AN=BC suy ra AM=AN(2)

Từ (1)và(2)suy ra A là trung điểm của MN