Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK
giả sử N là trung điểm AC
mà M là trung điểm AB ( gt )
=> MN là đường trung bình tam giác ABC
=> MN // BC
Vậy N là trung điểm AC
Từ C vẽ đường thẳng song song AB cắt MN tại E
Xét tam giác BMC và tam giác ECM ta có
MC là cạnh chung
góc BMC = góc MCE ( 2 góc so le trong và AB//CE)
góc BCM = góc CME ( 2 góc so le trong và MN //BC)
=> tam giác BMC = tam giác ECM ( g-c-g)
=> BM= CE
mà AM = BM ( M là trung điểm AB )
nên CE = AM
Xét tam giác ANM và tam giác CNE ta có
AM = CE ( cmt)
góc MAN = góc NCE ( 2 góc so le trong và AB//CE)
góc AMN = góc NEC ( 2 góc so le trong và AB//CE)
=> tam giac ANM = tam giác CNE (g-c-g)
=> AN= NC
=> N là trung điểm AC
(Tự vẽ hình)
Do BM//NI, MN//BI nên MNIB là hình bình hành
=> BM=IN (2 cạnh đối) (1)
Trong tam giác ABC, do M trung điểm AB, MN//BC => N trung điểm AC (2)
Do MA=MB,NA=NC nên MN là đường trung bình tam giác ABC => MN=1/2 BC (4)
CMTT, ta có I trung điểm BC (3)
Vậy ta có tất cả đpcm
giả sử N là trung điểm AC
mà M là trung điểm AB ( gt )
=> MN là đường trung bình tam giác ABC
=> MN // BC
Vậy N là trung điểm AC