Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDK và ΔEKD có
\(\widehat{BDK}=\widehat{EKD}\)
DK chung
\(\widehat{DKB}=\widehat{KDE}\)
Do đó: ΔBDK=ΔEKD
b: Xét ΔBCA có
D la trung điểm của AB
DE//BC
Do đó: E la trung điểm của AC
hay AE=EC
c: Xét tứ giác ADKE có
KE//AD
KD//AE
DO đó: ADKE là hình bình hành
Suy ra: Hai đường chéo AK và DE cắt nhau tại trung điểm của mỗi đường
=>I là trung điểm của AK
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
Theo đề đúng thì lm như sau:
a) Có: DE // BF (gt)
EF // BD (gt)
Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)
b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)
ED // BC (gt) => DEF = EFC (so le trong) (2)
Từ (1) và (2) => ADE = EFC
Xét t/g ADE và t/g EFC có:
EAD = CEF ( đồng vị)
AD = EF ( cùng = BD)
ADE = EFC (cmt)
Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)
c) Xét t/g MFE và t/g MDB có:
MF = MD (gt)
MFE = MDB (so le trong)
FE = DB (câu a)
Do đó, t/g MFE = t/g MDB (c.g.c)
=> EMF = BMD (2 góc tương ứng)
Mà EMF + EMD = 180o
Nên BMD + EMD = 180o
=> BME = 180o
hay B,M,E thẳng hàng (đpcm)
Câu a, b giống bài https://hoc24.vn/hoi-dap/question/504451.html?pos=1395379 chỉ khác tên điểm thôi.
c, Vì AB // KE(GT)
⇒ \(\left\{{}\begin{matrix}\widehat{ADI}=\widehat{KEI}\\\widehat{DAI}=\widehat{EKI}\end{matrix}\right.\) (2 góc SLT)
Xét ΔADI và ΔKEI có:
\(\widehat{ADI}=\widehat{KEI}\left(CMT\right)\)
AD=KE(CMT) (chứng minh trong bài bên trên ở câu a hay b j đấy)
\(\widehat{DAI}=\widehat{EKI}\left(CMT\right)\)
⇒ ΔADI và ΔKEI (g.c.g)
⇒ AI = KI(1) (2 cạnh tương ứng); \(\widehat{AID}=\widehat{KIE}\) (2 góc tương ứng)
Ta có: \(\widehat{AID}+\widehat{AIE}=180^0\)(2 góc kề bù)
Mà \(\widehat{AID}=\widehat{KIE}\left(CMT\right)\)
⇒ \(\widehat{KIE}+\widehat{AIE}=180^0\)
hay \(\widehat{AIK}=180^0\)
⇒ A, I, K thẳng hàng(2)
Từ (1) và (2) ⇒ I là TĐ của AK (đ/n TĐ đoạn thẳng)
nhanh , giúp mk vs ....