\(\frac{1}{2}\)BC

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Bn ui, vuong tai A ma goc A bang 50 do. Bn co nham de hk?

4 tháng 2 2020

1.  A B D C

Trên tia đối AB lấy D / AB = AD

=> A là trung điểm BD

=> AB = 1/2BD

Mà AB = 1/2BC (gt)

=> BD = BC

+ Xét △ABC, △ADC có :

AB = AD ( A là trung điểm BD)

^CAB = ^CAD = 90o

CA chung

Do đó : △ABC = △ADC (c-c-c)

=> BC = DC ( 2canh tương ứng)

Xét △DCB có : BD = BC = DC (cmt)

=> △DCB đều

=> ^CBA = 60o  (dấu hiệu nhận biết)

Vì △ABC (A = 90)

=> ^ABC + ^ACB = 90o

Mà ^ABC = 60o (cmt)

=> ^ACB = 90o - 60o = 30o

Vậy_

11 tháng 1 2017

a) Có M là trung điểm BC (đề bài)

=> AM là đường trung tuyến

mà AM = BC/2 (trong tam giác VUÔNG đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)

=> Tam giác ABC vuông tại A
=> Góc A = 90 độ

Câu b,c đang nghĩ nhé

29 tháng 5 2018

a )

Xét : \(\Delta ABHva\Delta ADH,co:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)

BH = HD ( gt )

AH là cạnh chung 

Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)

b ) 

Ta có : \(\Delta ABD\) là tam giác đều ( cmt ) 

= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o ) 

Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )

Hay  :  \(\widehat{EAD}=30^o\left(E\in AC\right)\)  

Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều ) 

Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)

Ta có : \(AH\perp BC\) và  \(ED\perp BC\)

= > \(AH//ED\) ( vì cùng vuông góc với BC ) 

=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED ) 

=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) ) 

c ) mình không biết chứng minh AH = HF = FC  nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :

Ta có : \(\Delta ABC\) vuông tại A  và AH là đường cao  ( gt ) 

= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)  ( hệ thức lượng trong tam giác vuông ) 

 Hình mình vẽ hơi xấu , thông cảm nha 

HỌC TỐT !!! 

  

29 tháng 5 2018

a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)

\(\rightarrow\) tam giác ABD cân tại A

Mà  \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều

b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ

\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ

Tương tự có \(\widehat{DAE}\) = 30độ

\(\Rightarrow\) Tam giác ADE cân tại E

c1) Xét tam giác AHC và tam giác CFA

           \(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ

           AC chung

\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)

\(\rightarrow\) AH = FC

Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ

\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ

 ____Phần còn lại cm tam giác HAF cân là ra 

Mk bận chút việc nên ms làm đến đây thui nka ~

24 tháng 5 2016
khó nhỉ
17 tháng 1 2017

Mấy bạn ko ai biết trả lời hết à

22 tháng 3 2020

A B C H

kẻ BH _|_ AC

xét tam giác ABH vuông tại H => ^ABH + ^BAH = 90 (đl)

^BAH = 60 (Gt)

=> ^ABH = 30; xét tam giác ABH vuông tại H

=> AH = AB/2 (đl)

=> AB = 2AH                  (1)

Tam giác ABH vuông tại H => HA^2 + HB^2 = AB^2 (pytago)

=> BH^2 = AB^2 - AH^2         (2)

xét tam giác BHC vuông tại H => BC^2 = HB^2 + HC^2 (pytago)

có HC = AC - AH

=> BC^2 = HB^2 + (AC - AH)^2 

=> BC^2 = HB^2 + AC^2 - 2AH.AC + AH^2 và (1)(2)

=> BC^2 = AB^2 - AH^2 + AC^2 - AB.AC + AH^2

=> BC^2 = AB^2 + AC^2 - AB.AC

15 tháng 10 2016

minh muon chet qua troi!!!!!!

15 tháng 10 2016

mk chư học đến căn bấc 2