Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có M là trung điểm BC (đề bài)
=> AM là đường trung tuyến
mà AM = BC/2 (trong tam giác VUÔNG đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)
=> Tam giác ABC vuông tại A
=> Góc A = 90 độ
Câu b,c đang nghĩ nhé
a) xét 2 tam giác vuông ABD và EBD có:
ABD=EBD(gt)
BD(chung)
suy ra tam giác ABD = EBD(CH-GN)
suy ra DA=DE(đfcm)
b) góc B= góc A- góc C=90-30=60(1)
theo câu a, ta có;tam giác ABD = EBD(CH-GN) suy ra BA=BE(2)
từ (1)(2) suy ra tam giác BAE đều(đfcm)
c)theo câu b, ta có: tam giác ABE đều suy ra AB=BE=AE(3)
góc : DBE=60/2=30 và C=30 suy ra góc DBE=C
ta có: BDE=90-30=60
CDE=90-30=60
suy ra BDE=CDE
xét tam giác BDE và CDE có:
BDE=CDE(cmt)
BED=CED=90(gt)
DE(chung)
suy ra tam giác BDE =CDE(g.c.g)
suy ra EB=EC=1/2BC(4)
từ (3) (4) suy ra AB=BE=EC mà CE=1/2 BC suy ra AB=1/2BC(đfcm)
a )
Xét : \(\Delta ABHva\Delta ADH,co:\)
\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)
BH = HD ( gt )
AH là cạnh chung
Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)
b )
Ta có : \(\Delta ABD\) là tam giác đều ( cmt )
= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o )
Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )
Hay : \(\widehat{EAD}=30^o\left(E\in AC\right)\)
Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều )
Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)
Ta có : \(AH\perp BC\) và \(ED\perp BC\)
= > \(AH//ED\) ( vì cùng vuông góc với BC )
=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED )
=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) )
c ) mình không biết chứng minh AH = HF = FC nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :
Ta có : \(\Delta ABC\) vuông tại A và AH là đường cao ( gt )
= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) ( hệ thức lượng trong tam giác vuông )
Hình mình vẽ hơi xấu , thông cảm nha
HỌC TỐT !!!
a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)
\(\rightarrow\) tam giác ABD cân tại A
Mà \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều
b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ
\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ
Tương tự có \(\widehat{DAE}\) = 30độ
\(\Rightarrow\) Tam giác ADE cân tại E
c1) Xét tam giác AHC và tam giác CFA
\(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ
AC chung
\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)
\(\rightarrow\) AH = FC
Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ
\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ
____Phần còn lại cm tam giác HAF cân là ra
Mk bận chút việc nên ms làm đến đây thui nka ~
Bn ui, vuong tai A ma goc A bang 50 do. Bn co nham de hk?
1. A B D C
Trên tia đối AB lấy D / AB = AD
=> A là trung điểm BD
=> AB = 1/2BD
Mà AB = 1/2BC (gt)
=> BD = BC
+ Xét △ABC, △ADC có :
AB = AD ( A là trung điểm BD)
^CAB = ^CAD = 90o
CA chung
Do đó : △ABC = △ADC (c-c-c)
=> BC = DC ( 2canh tương ứng)
Xét △DCB có : BD = BC = DC (cmt)
=> △DCB đều
=> ^CBA = 60o (dấu hiệu nhận biết)
Vì △ABC (A = 90)
=> ^ABC + ^ACB = 90o
Mà ^ABC = 60o (cmt)
=> ^ACB = 90o - 60o = 30o
Vậy_