Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
A B C M N I K
a, Xét tam giác ABC ta co :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC
=> BMNC là hình bình hành
b, Vì AK cắt BC tại K
Mà MN // BC => AK cắt MN tại I
=> MI = NI ( I là trung điểm )
=> AMKN là hình bình hành
=> AI = IK
Cho tâm giác cân ABC ( AB = AC ) gọi M,N,P theo thứ tự là trung điểm của AB , AC, BC cho Q là điểm đối xứng của P qua N chứng minh a,PMAQ là hình thang b,BMNC là hình thang cân c,ABPQ là hình bình hành đ,AMPQ là hình thoi e,APCQ là hình chữ nhật Giúp em với ạ
a) Ta có: N, P lần lượt là trung điểm của CA; CB
=> NP là đường trung bình của tam giác CAB với đáy AB
=> NP // = 1212AB (1)
mà M là trung điểm AB => AM = MB = 1212AB (2)
Từ (1); (2) => NP // = MB
=> BMNP là hình bình hành.
b. Từ (1) ; (2) => AMPN là hình bình hành
mà hbh AMPN có 1 góc vg nên => AMPN là hình chữ nhật