K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

bùi thị ánh phương  bn tham khảo tại link :

Câu hỏi của Phuong Truc - Toán lớp 7 | Học trực tuyến

26 tháng 7 2018

Tam giác ABI = Tam giác KCA(c.g.c)

Suy ra: AI = AK và góc I = góc CAK

Ta có: góc I + góc IAD = 90 độ

          góc CAK + góc IAD = 90 độ

          IAK = 90 độ

Tam giác AIK có: góc IAK = 90 độ và AI = AK

Vậy tam giác AIK vuông cân tại A.

26 tháng 7 2018

A B C D E I K

Dễ thấy ^ABD = ^ACE (Cùng phụ ^BAC) <=> 1800 - ^ABD = 1800 - ^ACE => ^ABI = ^KCA

Xét \(\Delta\)AIB và \(\Delta\)KAC: AB=KC; ^ABI = ^KCA; IB = AC => \(\Delta\)AIB = \(\Delta\)KAC (c.g.c)

=> AI = KA (2 cạnh tương ứng) (1)

Và ^AIB = ^KAC. Ta có: ^ABD là góc ngoài \(\Delta\)AIB => ^ABD = ^AIB + ^BAI

=> ^ABD = ^KAC + ^BAI. Mà ^ABD + ^BAC = 900 (Do \(\Delta\)ADB vuông ở D)

=> ^KAC + ^BAI + ^BAC = 900 => ^IAK = 900 (2)

Từ (1) và (2) => \(\Delta\)AIK vuông cân tại A (đpcm).

8 tháng 11 2015

Tớ không vẽ hình, cậu tự vẽ nha<<<
GIẢI:

Ta có :

\(ABD+BAC=90^0\)

\(ACE+BAC=90^0\)

\(\Rightarrow ABD=ACE\)

Mà : \(ABD+ADI=180^0\)

\(ACE+ACK=180^0\)

\(\Rightarrow ADI=ACK\)
Xét tam giác ABI và KCA có: 

\(AB=KC\left(GT\right)\)

\(ADI=ACK\left(CMtrên\right)\)

\(BI=CA\left(GT\right)\)
\(\Rightarrow TgABI=TgKCA\left(c.g.c\right)\)

\(\Rightarrow AI=KA\)( cặp cạnh tương ứng)
\(\Rightarrow\)Tam giác AIK cân tại A (1)
Vì tgABI=tgKCA

\(\Rightarrow IAB=AKC\) ( cặp góc tương ứng)
Mặt khác : \(AKC+BAC+KAC=90^0\)

\(\Rightarrow IAB+BAC+KAC=90^0\)hay \(IAK=90^0\)(2)
Từ (1) và (2) suy ra :
TG AIK vuông cân tại A


( tớ không làm được kí hiệu góc mong cậu thông cảm )
 

23 tháng 12 2018

Bn lm mik ko hiểu j cả

Rối loạn đầu óc quá

Tự vẽ hình nha

Ta có : 

\(\widehat{ABD}\)\(+\)\(\widehat{BAC}\)\(=90^o\)

\(\widehat{ACE}\)\(+\)\(\widehat{BAC}\) \(=90^o\)

\(\Rightarrow\widehat{ABD}\)\(=\)\(\widehat{ACE}\)

Mà \(\widehat{ABD}\)\(+\)\(\widehat{ADI}\)\(=180^o\)

      \(\widehat{ACE}\)\(+\)\(\widehat{ACK}\)\(=180^o\)

\(\Rightarrow\widehat{ADI}\)\(=\widehat{ACK}\)

Xét \(\Delta ABI\) và  \(\Delta KCA\)có :

\(AB=KC\left(gt\right)\)

\(\widehat{ADI}\)\(=\)\(\widehat{ACK}\)\(\left(cmt\right)\)

\(BI=CA\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta KCA\left(c.g.c\right)\)

\(\Rightarrow AI=KA\) ( cặp cạnh tương ứng )

\(\Rightarrow\Delta AKI\)cân tại A     (1)

Vì \(\Delta ABI=\Delta KCA\)

\(\Rightarrow\widehat{AIB}\)\(=\)\(\widehat{KAC}\) ( cặp góc tương ứng )

Mặt khác : \(\widehat{AKC}\)\(+\)\(\widehat{BAC}\)\(+\)\(\widehat{KAC}\)\(=90^o\)

\(\Rightarrow\widehat{IAB}\)\(+\)\(\widehat{BAC}\)\(+\)\(\widehat{KAC}\)\(=90^o\)hay  \(\widehat{IAK}\)\(=90^o\) \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\):

\(\Rightarrow\Delta AIK\)vuông cân tại \(A\)

12 tháng 2 2016

moi hok lop 6