K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Sửa đề: Cho tam giác ABC vuông tại A

a:

Ta có: DM//AC

K\(\in\)AC

Do đó: DM//AK 

Ta có: DK//AB

M\(\in\)AB

Do đó: AM//DK

Xét tứ giác AMDK có

AM//DK

AK//DM

Do đó: AMDK là hình bình hành

Hình bình hành AMDK có \(\widehat{DAK}=90^0\)

nên AMDK là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của BC

DM//AC

Do đó: M là trung điểm của AB

Xét ΔABC có

D là trung điểm của CB

DK//AB

Do đó: K là trung điểm của AC
Xét ΔABC có

D,K lần lượt là trung điểm của CB,CA
Do đó: DK là đường trung bình của ΔABC

=>DK//AB và \(DK=\dfrac{AB}{2}\)

Ta có: DK//AB

M\(\in\)AB

Do đó: DK//MB

ta có: \(DK=\dfrac{AB}{2}\)

\(MB=\dfrac{AB}{2}\)

Do đó: DK=MB

Xét tứ giác MKDB có

MB//DK

MB=DK

Do đó: MKDB là hình bình hành

loading...

a: Sửa đề: Cho tam giác ABC vuông tại A

Xét tứ giác AMDK có

AM//DK

AK//DM

Do đó: AMDK là hình bình hành

Hình bình hành AMDK có \(\widehat{KAM}=90^0\)

nên AMDK là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của BC

DM//AC

Do đó: M là trung điểm của AB

Xét ΔCAB có

D là trung điểm của BC

DK//AB

Do đó: K là trung điểm của AC

Xét ΔABC có

D,M lần lượt là trung điểm của BC,BA

=>DM là đường trung bình của ΔABC

=>DM//AC và \(DM=\dfrac{AC}{2}\)

Ta có: DM//AC

K\(\in\)AC

Do đó: DM//CK

Ta có: \(DM=\dfrac{AC}{2}\)

\(CK=\dfrac{AC}{2}\)(K là trung điểm của AC)

Do đó: DM=CK

Xét tứ giác DMKC có

DM//KC

DM=KC

Do đó: DMKC là hình bình hành

29 tháng 12 2017

B C A M H K N D O I

a) Xét tứ giác BHMK có 3 góc vuông nên nó là hình chữ nhật.

Khi đó hai đường chéo bằng nhau nên BM = HK.

b) Xét tam giác ABC có M là trung điểm AC, MK // AB nên MK là đường trung bình.

Vậy thì K là trung điểm BC.

Xét tứ giác BMCN có K là trung điểm hai đường chéo nên nó là hình bình hành.

Lại có MN vuông góc BC nên BMCN là hình thoi.

Dễ thấy rằng MK = AB/2 hay MN = AB.

Để hình thoi BMCN là hình vuông thì MN = BC hau AB = BC.

Vậy tam giác ABC là tam giác vuông cân tại B thì BMCN là hình vuông.

c) Ta có BHMK là hình chữ nhật nên BM giao HK tại trung điểm mỗi đường.

Dễ thấy tứ giác ABNM có AB song song và bằng NM nên nó là hình bình hành.

Vậy nên BM giao AM tại trung điểm mỗi đoạn.

Từ đó ta có BM, HK, AN đồng quy tại trung điểm mỗi đoạn.

d) Gọi giao điểm của BM, HK và AN làO, giao của BM và AK là I.

Ta có:  do KM // AB, áp dụng Talet:

 \(\frac{IM}{BI}=\frac{MK}{AB}=\frac{1}{2}\Rightarrow\frac{IM}{BO+OI}=\frac{1}{2}\Rightarrow\frac{IM}{IM+OI+OI}=\frac{1}{2}\)

\(\Rightarrow IM=2OM\)

Áp dụng Talet cho tam giác AND và ADC ta có:

\(\frac{OI}{DN}=\frac{AI}{AD}=\frac{IM}{DC}\Rightarrow\frac{OI}{DN}=\frac{IM}{DC}\Rightarrow DC=2ND\)

18 tháng 11 2015

tick cho mình rồi mình giải cho

a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)

nên AMIN là hình chữ nhật

b: IN=3cm

nên AM=3cm

IM=4cm

nên AN=4cm

Xét ΔABC có

I là trung điểm của BC

IM//AC

Do đó: M là trung điểm của AB

=>AB=6cm

Xét ΔABC có

I là trung điểm của BC

IN//AB

Do đó: N là trung điểm của AC

hay AC=8cm

\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: Xét tứ giác ADCI có 

N là trung điểm của AC

N là trung điểm của DI

Do đó: ADCI là hình bình hành

mà IA=IC

nên ADCI là hình thoi