K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

Xét ΔABC có 

\(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)

=>\(\dfrac{26.4^2+49.4^2-AB^2}{2\cdot26.4\cdot49.4}=cos\left(47^020'\right)\)

=>\(3137.32-AB^2=2608.32\cdot cos\left(47^020'\right)\)

=>\(AB=\sqrt{3137.32-2608.32\cdot cos47^020'}\simeq37\left(cm\right)\)

Xét ΔABC có \(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

=>\(\dfrac{37}{sin47^020'}=\dfrac{26.4}{sinB}=\dfrac{49.4}{sinA}\)

=>\(\left\{{}\begin{matrix}sinB\simeq0.52\\sinA\simeq0.98\end{matrix}\right.\Leftrightarrow\widehat{B}\simeq31^019'\)

\(\widehat{A}=180^0-31^019'-47^020'=101^021'\)

14 tháng 10 2023

\(c=\sqrt{a^2+b^2-2.a.b.cosC}\)

\(=\sqrt{49,4^2+26,4^2-2.26,4.49,4.cos47^o20'}\simeq37\)

Ta có:

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\left(26,4\right)^2+37^2-\left(49,4\right)^2}{2.26,4.37}\simeq-0,2\)

\(\Rightarrow\widehat{A}\simeq101,5^o\)

\(\Rightarrow\widehat{B}=180^o-101,5^o-47,3^o=31,2^o\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC, ta có:

\(\begin{array}{l}{c^2} = {b^2} + {a^2} - 2ab\cos C\\ \Leftrightarrow {c^2} = 26,{4^2} + 49,{4^2} - 2.26,4.49,4\cos {47^ \circ }20'\\ \Rightarrow c \approx 37\end{array}\)

Áp dụng định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\(\begin{array}{l} \Leftrightarrow \frac{{49,4}}{{\sin A}} = \frac{{26,4}}{{\sin B}} = \frac{{37}}{{\sin {{47}^ \circ }20'}}\\ \Rightarrow \sin A = \frac{{49,4.\sin {{47}^ \circ }20'}}{{37}} \approx 0,982 \Rightarrow \widehat A \approx {79^ \circ }\\ \Rightarrow \widehat B \approx {180^ \circ } - {79^ \circ } - {47^ \circ }20' = {53^ \circ }40'\end{array}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

NV
9 tháng 5 2021

\(A=180^0-\left(B+C\right)=63^0\)

Áp dụng định lý hàm sin:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)

\(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a.sinB}{sinA}=\dfrac{8.sin47^0}{sin63^0}\approx6,57\left(cm\right)\\c=\dfrac{a.sinC}{sinA}\approx8,44\left(cm\right)\end{matrix}\right.\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
11 tháng 12 2021

\(a,AC=\sqrt{\left(4-7\right)^2+\left(6-\dfrac{3}{2}\right)^2}=\sqrt{9+\dfrac{81}{4}}=\dfrac{3\sqrt{13}}{2}\\ AB=\sqrt{\left(4-1\right)^2+\left(6-4\right)^2}=\sqrt{9+4}=\sqrt{13}\\ BC=\sqrt{\left(1-7\right)^2+\left(4-\dfrac{3}{2}\right)^2}=\sqrt{36+\dfrac{25}{4}}=\dfrac{13}{2}\)

11 tháng 12 2021

\(c,BC^2=AB^2+AC^2\) nên \(\Delta ABC\) vuông tại A

28 tháng 12 2019

Giải bài 8 trang 59 sgk Hình học 10 | Để học tốt Toán 10

NV
26 tháng 12 2022

Áp dụng định lý hàm cosin:

\(b=\sqrt{a^2+c^2-2ac.cosB}=7\)

Diện tích:

\(S_{ABC}=\dfrac{1}{2}ac.sinB=10\sqrt{3}\)