K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

14 tháng 6 2021

A D B C 8 15 H I M N

a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm 

Xét tam giác ABD vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABD 

\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)

14 tháng 6 2021

b, Xét tam giác AHB vuông tại H đường cao HI 

 \(AH^2=IA.AB\)( hệ thức lượng ) (1) 

Xét tam giác ABD vuông tại A đường cao AH 

\(AH^2=DH.BH\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )

DD
13 tháng 7 2021

a) Xét tứ giác \(AKHI\)có: \(\widehat{KAI}=\widehat{AKH}=\widehat{HIA}=90^o\)

nên tứ giác \(AKHI\)có ba góc vuông nên \(AKHI\)là hình chữ nhật. 

b) \(\Delta AKH=\Delta KAI\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{KIA}\)(hai góc tương ứng) 

mà \(\widehat{AHK}=\widehat{ACB}\)(vì cùng phụ với \(\widehat{HAC}\)

nên \(\widehat{KIA}=\widehat{ACB}\)

Xét tam giác \(AIK\)và tam giác \(ACB\)có: 

\(\widehat{IAK}=\widehat{CAB}\)(góc chung) 

\(\widehat{KIA}=\widehat{BCA}\)(cmt) 

\(\Rightarrow\Delta AIK~\Delta ACB\left(g.g\right)\)

\(\Rightarrow\frac{AI}{AC}=\frac{AK}{AB}\)(hai cặp cạnh tương ứng) 

\(\Rightarrow AI.AB=AK.AC\).

c) \(AI.AB=AK.AC\Leftrightarrow\frac{AB}{AC}=\frac{AK}{AI}\)

Xét tam giác \(ABK\)và tam giác \(ACI\):

\(\widehat{A}\)chung

\(\frac{AB}{AC}=\frac{AK}{AI}\)(cmt)

\(\Rightarrow\Delta ABK~\Delta ACI\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABK}=\widehat{ACI}\)(hai góc tương ứng)