K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam giác ADF cân tại A => ÐADF = ÐAFD < 900 => sđ cung DF < 1800 => ÐDEF < 900 ( vì góc DEF nội tiếp chắn cung DE).

Chứng minh tương tự ta có ÐDFE < 900; ÐEDF < 900. Như vậy tam giác DEF có ba góc nhọn.

2. Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC.

3. DF // BC => BDFC là hình thang lại có Ð B = ÐC (vì tam giác ABC cân)

=> BDFC là hình thang cân do đó BDFC nội tiếp được một đường tròn .

4. Xét hai tam giác BDM và CBF Ta có Ð DBM = ÐBCF ( hai góc đáy của tam giác cân).

ÐBDM = ÐBFD (nội tiếp cùng chắn cung DI); Ð CBF = ÐBFD (vì so le) => ÐBDM = ÐCBF .

=> DBDM ~DCBF =>

20 tháng 3 2019

Tứ giác ná»i tiếp

a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)

Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)

\(\Rightarrow ODAF\) là tứ giác nội tiếp.

Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.

Từ các tứ giác nội tiếp suy ra:

\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)

hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)

Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)

Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$

\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)

\(\Rightarrow \triangle DEF\) có 3 góc nhọn.

b)

Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)

Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)

Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)

c)

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)

\(\Rightarrow BDFC\) nội tiếp.

d)

$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)

Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)

Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)

Xét tam giác $BDM$ và $BCD$ có:

\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)

\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)

Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)

Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)

6 tháng 4 2016

http://d.dathoc.com/uploads/resources/601/1199949/preview.swf

6 tháng 4 2016

cái j đây tuấn 

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Tứ giác nội tiếp

a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)

Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)

\(\Rightarrow ODAF\) là tứ giác nội tiếp.

Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.

Từ các tứ giác nội tiếp suy ra:

\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)

hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)

Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)

Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$

\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)

\(\Rightarrow \triangle DEF\) có 3 góc nhọn.

b)

Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)

Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)

Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)

c)

\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)

\(\Rightarrow BDFC\) nội tiếp.

d)

$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)

Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)

Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)

Xét tam giác $BDM$ và $BCD$ có:

\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)

\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)

Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)

Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Nguyễn Xuân Dương: làm sao như vậy được em. Đường tròn (O) tiếp xúc với ba cạnh tam giác thì đây là đặc điểm của đường tròn nội tiếp (tiếp xúc trong) hoặc bàng tiếp (tiếp xúc ngoài). Ở đây ta đang làm trong TH nó tiếp xúc trong.

AH
Akai Haruma
Giáo viên
18 tháng 3 2019

Điểm D đã nằm trên BC thì $DI$ làm sao cắt $BC$ tại M được nữa?

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu