Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)
Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)
\(\Rightarrow ODAF\) là tứ giác nội tiếp.
Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.
Từ các tứ giác nội tiếp suy ra:
\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)
hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)
Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)
Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$
\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)
\(\Rightarrow \triangle DEF\) có 3 góc nhọn.
b)
Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)
Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)
Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)
c)
\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)
\(\Rightarrow BDFC\) nội tiếp.
d)
$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)
Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)
Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)
Xét tam giác $BDM$ và $BCD$ có:
\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)
\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)
Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)
Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)
Nguyễn Xuân Dương: làm sao như vậy được em. Đường tròn (O) tiếp xúc với ba cạnh tam giác thì đây là đặc điểm của đường tròn nội tiếp (tiếp xúc trong) hoặc bàng tiếp (tiếp xúc ngoài). Ở đây ta đang làm trong TH nó tiếp xúc trong.
Điểm D đã nằm trên BC thì $DI$ làm sao cắt $BC$ tại M được nữa?
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
1. (HD) Theo t/c hai tiếp tuyến cắt nhau ta có AD = AF => tam giác ADF cân tại A => ÐADF = ÐAFD < 900 => sđ cung DF < 1800 => ÐDEF < 900 ( vì góc DEF nội tiếp chắn cung DE).
Chứng minh tương tự ta có ÐDFE < 900; ÐEDF < 900. Như vậy tam giác DEF có ba góc nhọn.
2. Ta có AB = AC (gt); AD = AF (theo trên) => => DF // BC.
3. DF // BC => BDFC là hình thang lại có Ð B = ÐC (vì tam giác ABC cân)
=> BDFC là hình thang cân do đó BDFC nội tiếp được một đường tròn .
4. Xét hai tam giác BDM và CBF Ta có Ð DBM = ÐBCF ( hai góc đáy của tam giác cân).
ÐBDM = ÐBFD (nội tiếp cùng chắn cung DI); Ð CBF = ÐBFD (vì so le) => ÐBDM = ÐCBF .
=> DBDM ~DCBF =>
a) Đường tròn $(O)$ tiếp xúc với \(AB.BC,CA\) tại $D,E,F$, tức là $O$ là giao của ba đường phân giác tam giác $ABC$ và \(OD\perp AB, OF\perp AC, OE\perp BC\)
Do đó: \(\widehat{ODA}+\widehat{OFA}=90^0+90^0=180^0\)
\(\Rightarrow ODAF\) là tứ giác nội tiếp.
Hoàn toàn tương tự: \(ODBE, OECF\) nội tiếp.
Từ các tứ giác nội tiếp suy ra:
\(\left\{\begin{matrix} \widehat{ODF}=\widehat{OAF}=\frac{\widehat{A}}{2}\\ \widehat{ODE}=\widehat{OBE}=\frac{\widehat{B}}{2}\end{matrix}\right.\) \(\Rightarrow \widehat{ODF}+\widehat{ODE}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)
hay \(\widehat{EDF}=\frac{\widehat{A}+\widehat{B}}{2}\)
Tương tự: \(\widehat{DEF}=\frac{\widehat{B}+\widehat{C}}{2}\) và \(\widehat{EFD}=\frac{\widehat{A}+\widehat{C}}{2}\)
Vì $ABC$ là tam giác nhọn nên các góc đều nhỏ hơn $90^0$
\(\Rightarrow \widehat{EDF}, \widehat{DEF}, \widehat{EFD}< 90^0\)
\(\Rightarrow \triangle DEF\) có 3 góc nhọn.
b)
Vì tam giác $ABC$ cân tại $A$ nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow \widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90^0-\frac{\widehat{A}}{2}\)
Tứ giác $ODAF$ nội tiếp \(\Rightarrow \widehat{ADF}=\widehat{AOF}=90^0-\widehat{OAF}=90^0-\frac{\widehat{A}}{2}\)
Do đó: \(\widehat{ABC}=\widehat{ADF}\), hai góc này ở vị trí đồng vị nên \(DF\parallel BC\)
c)
\(\left\{\begin{matrix} \widehat{ABC}=\widehat{ACB}\\ \widehat{ABC}=\widehat{ADF}(\text{theo phần b})\end{matrix}\right.\) \(\Rightarrow \widehat{ADF}=\widehat{ACB}=\widehat{FCB}\)
\(\Rightarrow BDFC\) nội tiếp.
d)
$BD$ là tiếp tuyến của $(O)$ nên \(\widehat{BDM}=\widehat{DFI}=\widehat{DFB}\) (cùng chắn cung DI)
Mà do $BDFC$ nội tiếp nên \(\widehat{DFB}=\widehat{DCB}\)
Từ đây suy ra \(\widehat{BDM}=\widehat{DCB}\)
Xét tam giác $BDM$ và $BCD$ có:
\(\left\{\begin{matrix} \angle \text{B Chung}\\ \widehat{BDM}=\widehat{BCD}(cmt)\end{matrix}\right.\Rightarrow \triangle BDM\sim \triangle BCD(g.g)\)
\(\Rightarrow \frac{BD}{BC}=\frac{BM}{BD}(1)\)
Do \(DF\parallel BC\Rightarrow \frac{BD}{AB}=\frac{CF}{AC}\) (theo định lý Ta -let) mà \(AB=AC\Rightarrow BD=CF(2)\)
Từ \((1); (2)\Rightarrow \frac{BD}{BC}=\frac{BM}{CF}\) (đpcm)