\(\in\)AC).Trên cạnh BC lấy điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

A B C H F D

Xét \(\Delta ABD\)\(\Delta FBD\) có:

\(AB=FB\left(gt\right)\)

\(\widehat{ABD}=\widehat{FBD}\) (suy từ gt)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta FBD\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAD}=\widehat{BFD}=90^o\)

\(\Rightarrow DF\perp BC\)

Ta có: \(\left\{{}\begin{matrix}AH\perp BC\\DF\perp BC\end{matrix}\right.\) \(\Rightarrow AH\) // DF.

13 tháng 3 2017

lát nữa mình thử làm xem

13 tháng 3 2017

A B C D F H 1 2

Xét \(\Delta ABD\) và \(\Delta FBD\) có :

AB = BF (gt)

\(\widehat{B}_1=\widehat{B}_2\) (gt)

BD là cạnh chung

\(\Rightarrow\Delta EBD=\Delta FBD\left(c-g-c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{BFD}=90^0\) (Góc T/Ư)

=> DF vuông góc với BD

Mà AH vuông góc BC => AH // DF (đpcm)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

5 tháng 5 2017

minh dang gap, hom nay minh thi HK2 mon toan

28 tháng 6 2020

A

a. Xét tam giác ABD và tam giác EBD có 

                cạnh BD chung

               góc ABD = góc EBD [ vì BD là pg góc B ]

                 BA = BE [ gt ]

Do đó ; tam giác ABD = tam giác EBD [ c.g.c ]

\(\Rightarrow\)góc BAD = góc BED [ góc tương ứng ]

mà bài cho góc BAD = 90độ

\(\Rightarrow\)góc BED = 90độ

Vậy DE vuông góc với BE 

b.Theo câu a tam giác ABD = tam giác BED 

\(\Rightarrow\)DA = DE nên D thuộc đường trung trực của AE 

mà BA = BE nên B thuộc đường trung trực của AE 

\(\Rightarrow\)BD thuộc đường trung trực của AE

4 tháng 2 2019

Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AF

b) AD < BC

c) Ba điểm E, D, F thẳng hàng

14 tháng 12 2016

Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....

14 tháng 12 2016

sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo