Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đỗ Hương GiangNguyễn Lê Hoàng ViệtNguyễn Huy ThắngNguyễn Huy Tú
Trần Việt LinhVõ Đông Anh TuấnPhương An
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D H 1 2
a) Xét Δ AHB và ΔDHB có:
BH: cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=DH(gt)
=> Δ AHB = ΔDHB (c.g.c)
b) Vì: ΔAHB=ΔDHB(cmt)
=> AB=BD ; \(\widehat{B_1}=\widehat{B_2}\)
Xét ΔABC và ΔDBC có:
BC:cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) (cmt)
AB=BD
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}=\widehat{BDC}\)
Mà: \(\widehat{BAC}=90^o\)
=> \(\widehat{BDC}=90^o\)
hay \(BD\perp CD\)
c) Xét ΔABC vuông tại A (gt)
=> \(\widehat{B_1}+\widehat{ACB}=90^o\)
=> \(\widehat{ACB}=90^o-\widehat{B_1}=90-60=30^o\)
Vì: ΔABC = ΔDBC (cmt)
=> \(\widehat{ACB}=\widehat{DCB}\)
=>\(\widehat{ACD}=2\cdot\widehat{ACB}=2\cdot30=60\)
A B C H D a) Xét ΔAHB và ΔDHB có:
HB là cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=HD (gt)
=> ΔAHB=ΔDHB (c-g-c)
b) Theo câu a ta có: ΔAHB=ΔDHB
=> AB=DB; \(\widehat{ABH}=\widehat{DBH}\)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{ABC}=\widehat{DBC}\) (chứng minh trên)
AB=DB (chứng minh trên)
=> ΔABC=ΔDBC (c-g-c)
=> \(\widehat{BAC}=\widehat{BDC}\)
Mà \(\widehat{BAC}=90^o\) => \(\widehat{BDC}=90^o\)
Vậy BD\(\perp\)DC
c) Vì ΔABC vuông tại A nên \(\widehat{ABC}+\widehat{BCA}=90^o\)
=> \(\widehat{BCA}\)= \(90^o-\widehat{ABC}\)=90o-60o=30o
Theo câu b ta có: ΔABC=ΔDBC
=> \(\widehat{ACB}=\widehat{DCB}=30^o\)
=> \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}=30^o+30^o=60^o\)
Vậy \(\widehat{ACD}=60^o\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình tự vẽ nha
a) Vì tam giác ABC cân tại A
=> ABC = ACB (1)
Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)
Từ (1) và (2) => ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( gt )
ABD = ACE ( cmt )
BD = CE ( gt )
=> tam giác ABD = tam giác ACE ( c-g-c )
=> D = E
Xét tam giác BHD và tam giác CKE có :
DHB = EKC ( = 900 )
BD = CE ( gt )
D = E ( cmt )
=> tam giác BHD = tam giác CKE ( ch - gn )
=> đpcm
b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )
=> HAB = KAC ( 2 góc tương ứng )
Xét tam giác AHB và tam giác AKC có :
HAB = KAC ( cmt )
AHB = AKC ( = 900 )
AB = AC ( gt )
=> tam giác AHB = tam giác AKC ( ch - gn )
=> đpcm
c) Nối H với K
Xét tam giác ADE cân tại A ( vì AD = AE )
=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Xét tam giác AHK cân tại A ( vì AH = AK )
\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) => D = AHK
mà 1 góc này ở vị trí đồng vị
=> HK // DE hay HK // BC ( đpcm )
Có j lên đây hỏi nha : Group Toán Học
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.
Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....
sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo