Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi K là trung điểm của BC
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔCAB có
O,K lần lượt là trung điểm của CA,CB
=>OK là đường trung bình
=>OK//AB và \(OK=\dfrac{AB}{2}\)
=>\(\overrightarrow{OK}=\dfrac{\overrightarrow{AB}}{2}\)
=>\(\overrightarrow{AB}=2\cdot\overrightarrow{OK}\)
Xét ΔOBC có OK là đường trung tuyến
nên \(\overrightarrow{OB}+\overrightarrow{OC}=2\cdot\overrightarrow{OK}\)
=>\(\overrightarrow{AB}=\overrightarrow{OB}+\overrightarrow{OC}\)
=>M trùng với B
Bài 2:
Xét ΔABC có
M,P lần lượt là trung điểm của AB,AC
=>MP là đường trung bình của ΔABC
=>MP//BC và MP=BC/2
=>MP=CN
mà MP//NC
nên MPCN là hình bình hành
=>\(\overrightarrow{MP}=\overrightarrow{NC}\)
=>\(\overrightarrow{MP}=-\overrightarrow{CN}\)
=>\(\overrightarrow{MP}+\overrightarrow{CN}=\overrightarrow{0}\)
mà \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\)
nên K trùng với P
Xét hình thang ADCB có
Q,P lần lượt là trung điểm của AB,DC
=>QP là đường trung bình của hình thang ADCB
=>QP//AD//BC và \(QP=\dfrac{AD+BC}{2}=\dfrac{\dfrac{BC}{2}+BC}{2}=\dfrac{3}{4}BC\)
Ta có: M là trung điểm của BC
=>\(BM=MC=\dfrac{BC}{2}\)
Ta có: N là trung điểm của MC
=>\(MN=NC=\dfrac{MC}{2}=\dfrac{BC}{4}\)
BM+MN=BN
=>\(BN=\dfrac{1}{4}BC+\dfrac{1}{2}BC=\dfrac{3}{4}BC\)
=>QP=BN
Ta có: QP//BN
QP=BN
Do đó: \(\overrightarrow{QP}=\overrightarrow{BN}\)
=>Điểm E trùng với điểm P
\(2\overrightarrow{KA}+3\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\)
\(\Rightarrow2\overrightarrow{MA}+3\overrightarrow{MB}+\overrightarrow{MC}=2\left(\overrightarrow{MK}+\overrightarrow{KA}\right)+3\left(\overrightarrow{MK}+\overrightarrow{KB}\right)+\left(\overrightarrow{MK}+\overrightarrow{KC}\right)=6\overrightarrow{MK}\)
Mà theo giả thiết thì ta có \(2\overrightarrow{MA}+3\overrightarrow{MB}+\overrightarrow{MC}=6\overrightarrow{MK}\Rightarrow\overrightarrow{MN}=6\overrightarrow{MK}\)
Từ đó suy ra M,N,K thẳng hàng. Mặt khác \(\left|\overrightarrow{MN}\right|=6\left|\overrightarrow{MK}\right|\) nên ta dễ thấy N cố định (Vì K cố định).
a: \(\overrightarrow{MA}=-3\cdot\overrightarrow{MB}\)
\(\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\)
=>\(-3\cdot\overrightarrow{MB}-\overrightarrow{MB}=\overrightarrow{BA}\)
=>\(\overrightarrow{BA}=-4\overrightarrow{MB}=4\overrightarrow{BM}\)
=>M nằm giữa A và B sao cho BA=4BM
b:
Gọi E là trung điểm của AB
Vì E là trung điểm của AB nên \(\overrightarrow{NA}+\overrightarrow{NB}=2\cdot\overrightarrow{NE}\)
\(\overrightarrow{NA}+\overrightarrow{NB}+2\cdot\overrightarrow{NC}=\overrightarrow{0}\)
=>\(2\cdot\overrightarrow{NE}+2\cdot\overrightarrow{NC}=\overrightarrow{0}\)
=>\(\overrightarrow{NE}+\overrightarrow{NC}=\overrightarrow{0}\)
=>N là trung điểm của CE
c: \(\left|\overrightarrow{PA}\right|=\left|\overrightarrow{PB}\right|\)
=>\(\left[{}\begin{matrix}\overrightarrow{PA}=-\overrightarrow{PB}\\\overrightarrow{PA}=\overrightarrow{PB}\left(loại\right)\end{matrix}\right.\)
=>\(\overrightarrow{PA}=-\overrightarrow{PB}\)
=>P là trung điểm của AB