Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ADB=góc ABD=45 độ
góc AKH=góc KAH=45 độ
=>góc ADB=góc AKB
=>ADKB nội tiép
b: ADKB là tứ giác nội tiếp
=>góc AKD=góc ABD=45 độ
tham khảo nhé .
gọi K là giao điểm của ED và BC , vẽ DM vuông góc với AH ở M.
Ta có DM // BC ( tự cm ) => MD /CH = AD / AC = AM / AH = 1 / 3 ( do AD = 1/3 AC )
=> MD = CH/3 ( * ) và AM = AH/3 = EH ( do EH = AH/3 )
ta có AM = EH /3 => AM = MH / 2 = EH => EH = EM / 3
ta lại có HK / MD = EH / EM = 1/ 3 ( ** )
từ ( *) và ( ** ) ta có HK = CH / 9 .
ta có AH^2 = BH.CH = 9 (EH^2) = BH.9HK
=> EH^2 = BH.HK => tam giác BEK vuông ở E mà D thuộc EK nên BÊD = 90.
*Kẻ DM ⊥ AH ( M ∈ AH )
Xét △AHC có : MD // BC
=> AM/AH = AD/AC ( Ta-lét)
=> AM/AH=HE/AH ( = AD/AC = 1/3 )
=> AM = HE
Ta có : AH + HE - AM = MH => AH = MH
Xét △EMD ( góc EMD = 90 )
=> ME^2 + MD^2 = DE^2 ( Pytago ) (1)
Tương tự với các : +△BHE => BE^2 = BH^2 + HE^2 (2)
+△ABH => BH^2 = AB^2 - AH^2
+△AMD => MD^2 = AD^2 - AM^2
+△ABD => BD^2 = AB^2 + AD^2
Cộng (1) với (2), ta đc :
DE^2 + BE^2 = ME^2 + MD^2 + BH^2 - HE^2
<=> DE^2 + BE^2 = AH^2 + AD^2 - AM^2 + AB^2- AH^2 + AM^2
<=> DE^2 + BE^2 = AD^2 + AB^2
=> DE^2 + BE^2 = BD^2
=> △BDE vuông tại E ( Pytago đảo )
=> góc BED = 90 -> đcpcm
( Có thể có sai sót lúc làm mong đóng góp ) =))
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AI là đường cao ứng với cạnh huyền BD, ta được:
\(BI\cdot BD=AB^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BI\cdot BD=BH\cdot BC\)
Vẽ DF _|_ AH tại F, do đó AF=HE, HA=FE
Áp dụng đinhk lý Pytago vào các tam giác vuông HEB, FDE, HAB, FAD, ABD ta sẽ chứng minh \(BE^2+ED^2=BD^2\)
Do đó \(\Delta\)BED vuông tại E => \(\widehat{BED}=90^0\)
*Không hiểu chỗ nào inbox*