K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Vậy: AC=12cm

câu b,c đâu rồi

7 tháng 3 2023

`a)`

`Delta HAC` vuông tại `H` có :`hat(A_1)+hat(ACB)=90^0`

`hat(HAB)+hat(A_1)=90^0(kề bù)`

nên `hat(ACB)=hat(A_1)(đpcm)`

`b)`

`Delta HAC` vuông tại `H` có : `hat(A_1)+hat(ACH)=90^0` 

hay `hat(A_1)+hat(ACB)=90^0`

`Delta ABC` vuông tại `A` có : `hat(B)=hat(ACB)=90^0`

nên `hat(B)=hat(A_1)`

Có `hat(IAC)=hat(A_1)+hat(A_2)`

`=1/2 hat(BAH)+hat(B)=1/2 hat(BCA) +hat(BAH)` (1)

`hat(C_1)=1/2 hat(ACB)(CI` là p/g của `hat(ACB)` `)`(2)

Từ `(1)` và `(2)=>hat(IAC)+hat(C_1)=hat(ABH)+hat(ACB)`

mà `hat(ABH)+hat(ACB)=90^0` 

nên `hat(IAC)+hat(C_1)=90^0`

hay `hat(I_1)=90^0`

a: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là phân giác của góc BAC

c: ΔABC cân tại A

mà AH là trung tuyến

nên AH là trung trực của BC

=>I nằm trên trung trực của BC

=>IB=IC

d: Xet ΔABN có góc ABN=góc ANB=góc MBC

nên ΔABN can tại A

=>AB=AN

e: Xét ΔABC co

BM,AM là phân giác

nên M là tâm đừog tròn nội tiếp

=>CM là phân giác của góc ACB

Xét ΔHCM vuông tại H và ΔKCM vuông tại K có

CM chung

góc HCM=góc KCM

=>ΔHCM=ΔKCM

=>MH=MK

12 tháng 12 2016
a)xét tg mhc và tg Mbk có Mb=mc(gt) M1=m2 Mk=m=)) tg mhc = tg mbk (c-g-c)

a: Đề sai rồi bạn

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH

c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)

\(\widehat{MAH}+\widehat{BHA}=90^0\)

mà \(\widehat{BAH}=\widehat{BHA}\)

nên \(\widehat{CAH}=\widehat{MAH}\)

hay AH là tia phân giác của góc MAC