Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc β: Góc giữa B', C, A Góc β: Góc giữa B', C, A Góc γ: Góc giữa B'', C, B' Góc γ: Góc giữa B'', C, B' Góc δ: Góc giữa B, C, E Góc δ: Góc giữa B, C, E Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [C, D] Đoạn thẳng m: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [D, H] Đoạn thẳng r: Đoạn thẳng [E, K] B = (-0.89, 7.08) B = (-0.89, 7.08) B = (-0.89, 7.08) A = (-0.9, 2.2) A = (-0.9, 2.2) A = (-0.9, 2.2) Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm C: Điểm trên g Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm E: Giao điểm của k, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm D: Giao điểm của j, f Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm H: Giao điểm của n, m Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i Điểm K: Giao điểm của q, i
Kẻ \(DH⊥EC\left(H\in EC\right)\)
Khi đó do \(\widehat{ACD}=\widehat{HCD}\left(gt\right)\Rightarrow\Delta ACD=\Delta HCD\) (Cạnh huyền góc nhọn)
Vậy nên AD = HD (Hai cạnh tương ứng)
Lại thấy HD là đường vuông góc, DE lại là đường xiên nên DH < DE hay AD < DE.
Tương tự, kẻ \(EK⊥BC\left(K\in BC\right)\)
Ta cũng chứng minh được DE = EK < EB.
Vậy thì AD < DE < EB (đpcm).
câu a là c/m 2 tam giác bằng nhau nhé: tg AED và tg ACD từ đó suy là các ggo1c và cạnh tương ứng bằng nhau nha!
câu b là: vì tg AEC là tg cân( AE=EC) , ad là tia phân giác mà I thuộc Ad nên Ai cũng là tia phân giác góc EAC suy ra AI là đường trung trực suy ra I là trung điểm Ec và Ai vuông góc EC
a) Xét tam giác BAD và tam giác EAD
có: BA = EA ( gt)
góc BAD = góc EAD ( gt)
AD là cạnh chung
=> tam giác BAD = tam giác EAD ( c-g-c)
=> BD = ED ( 2 cạnh tương ứng)
b) ta có: tam giác BAD = tam giác EAD ( phần a)
=> góc BDA == góc EDA ( 2 góc tương ứng)
mà góc BDK = góc EDC ( đối đỉnh)
=> góc BDA + góc BDK = góc EDA + góc EDC
=>góc ADK = góc ADC
Xét tam giác AKD và tam giác ACD
có: góc BAD = góc CAD ( gt)
AD là cạnh chung
góc ADK = góc ADC ( cmt)
=> tam giác AKD = tam giác ACD ( g-c-g)
=> KD = CD ( 2 cạnh tương ứng)
Xét tam giác DBK và tam giác DEC
có: DB = DE ( phần a)
góc BDK = góc EDC ( đối đỉnh)
DK = DC ( cmt)
=> tam giác DBK = tam giác DEC ( c-g-c)
c) ta có: tam giác AKD = tam giác ACD ( chứng minh phần b)
=> AK = AC ( 2 cạnh tương ứng)
=> tam giác AKC cân tại A ( định lí tam giác cân)
d) ( mk nghĩ bn ghi nhầm đề bài rùi, đề bài phải là: chứng minh: AD vuông góc CK)
Gọi giao điểm của AD và CK là F
Xét tam giác AKF và tam giác ACF
có: AK = AC ( chứng minh phần c)
góc BAD = góc CAD ( gt)
AF là cạnh chung
=> tam giác AKF = tam giác ACF ( c-g-c)
=>góc KFA = góc CFA ( 2 góc tương ứng)
mà góc KFA + góc CFA = 180 độ ( kề bù)
=> góc KFA + góc KFA = 180 độ
2 . góc KFA = 180 độ
góc KFA = 180 độ : 2
góc KFA = 90 độ
=> AD vuông góc với CK tại F ( định lí)
* CMR :
a/ BD = CE :
Xét T/g ABD và ACD có :
AB= AE ( gt )
A1 = A2 ( t/c p/ giác )
AD chung
=> T/g ABD = T/g ACD ( c.g.c )
=> BD = DE
b/ C/m : t/g DBK = DEC
Ta có :
B1 + B2 = 180 ( kb)
E1 + E2 = 180 ( kb )
mà B1 = E1 ( T/g ABD = T/g ACD )
=> B2 = E2
- Xét t/g DBK và t/g DEC :
B2 = E2 ( cmt )
BD = DE (cmt)
BDK = EDC ( đđ )
=> T/g DBK = t/g DEC ( g.c.g )
c/ AKC là t/g j vì s ?
Ta có :
AB + BK = AK
AE + EC = AC
mà AB = AE ( gt ) ( bạn cũng có thể làm BK = EC do 2 t/g kia = nhau )
=> AK = AC
=> T/g AKC cân tại A
d/ Hình như đề sai đó bạn ơi
A B C E D 1 2 K 1 2 1 2 1 1