Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=90 độ
b: BA=BE
DA=DE
=>BD là trung trực của AE
DA=DE
DE<DC
=>DA<DC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>AD=ED
b: BA=BE
DA=DE
=>BD là trung trực của AE
AD=DE
DE<DC
=>AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
a) Xét tg ABM và ACM có :
AB=AC(gt)
AM-cạnh chung
MB=MB(gt)
=> Tg ABM=ACM(c.c.c)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
=> AM là tia pg góc A (đccm)
b) Xét tg BNC và DNC có :
BC=CD(gt)
\(\widehat{DCN}=\widehat{BCN}\left(gt\right)\)
NC-cạnh chung
=> Tg BNC=DNC(c.g.c)
\(\Rightarrow\widehat{CND}=\widehat{CNB}=\frac{\widehat{DNB}}{2}=\frac{180^o}{2}=90^o\)
\(\Rightarrow CN\perp BD\left(đccm\right)\)
c) Có : AB=AC(gt)
=> Tg ABC cân tịa A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(1)
- Do tg BNC=DNC(cmt)
\(\widehat{ABC}=\widehat{BDC}\)(2)
- Từ (1) và (2)\(\Rightarrow\widehat{BDC}=\widehat{ACB}\)
- Có : \(\widehat{ADC}+\widehat{BDC}=180^o\)
\(\widehat{ACB}+\widehat{BCE}=180^o\)
Mà : \(\widehat{BDC}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{ADC}\left(đccm\right)\)
d) Xét tg ACD và EBC có :
BC=CD(gt)
DA=CE(gt)
\(\widehat{BCE}=\widehat{ADC}\left(cmt\right)\)
=> Tg ACD=EBC(c.g.c)
=> AC=BE
Mà AC=AB(gt)
=> BE=AB (đccm)
#H
a)
+) Do tam giác ABC cân tại A nên trung tuyến AH đồng thời là đường caio.
Vậy nên \(\widehat{AHB}=90^o\)
Theo tính chất góc ngoài của tam giác, ta có:
\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)
Xét tam giác ABI và tam giác BEC có:
AI = BC (gt)
BA = EB (gt)
\(\widehat{IAB}=\widehat{CBE}\) (cmt)
\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)
+) Gọi giao điểm của EC với AB và BI lần lượt là J và K.
Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)
Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)
Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)
b) Gọi O là trung điểm MN. Ta thấy DN và DM là phân giác của hai góc kề bù nên chúng vuông góc với nhau.
Vậy tam giác DMN vuông tại D. Khi đó ta có DO là trung tuyến ứng với cạnh huyền nên DO = MN/2
Vậy DO = OM = OM hay các tam giác DOM và DON cân tại O.
Ta có: \(\widehat{DOM}=180^o-2\widehat{DMO}=180^o-2\left(\widehat{MDB}+\widehat{MBD}\right)\)
\(=180^o-2.\widehat{MDB}-2.\widehat{MBD}=180^o-\widehat{BDC}-\widehat{ABC}\)
\(=180^o-\widehat{BDC}-\widehat{ACB}=\widehat{DBO}\)
Vậy tam giác DBO cân tại D hay DB = DO.
Vậy nên BD = MN/2.
xét tam giác BAI va CBE
be=ab
bc=ia
iab=ebc
=>tam giác BAI=tam giác CBE