K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,b: Xét ΔMBA và ΔMCD có

MB=MC

\(\widehat{BMA}=\widehat{CMD}\)(hai góc đối đỉnh)

MA=MD

Do đó: ΔMBA=ΔMCD

=>AB=CD

mà AB<AC

nên CD<AC

c: ΔMBA=ΔMCD

=>\(\widehat{MAB}=\widehat{MDC}\left(1\right)\)

Xét ΔCDA có CD<CA

mà \(\widehat{CAD};\widehat{CDA}\) lần lượt là góc đối diện của các cạnh CD,CA

nên \(\widehat{CAD}< \widehat{CDA}\)(2)

Từ (1),(2) suy ra \(\widehat{CAD}< \widehat{MAB}\)

 

12 tháng 9 2015

a, áp dụng định lí pytago vào tam giác ABC ta có:

              \(BC^2=AB^2+AC^2\)

               \(BC^2=3^2+4^2=25\)

               \(BC=\sqrt{25}=5\)

B, xét tam giác BAC và DCA có:

            BM=MC

            AM=MD

            góc BMA= DMC (đối đỉnh)

           => Tam giác BAC=DCA

              =>BA=DC

              Góc BAM=MDC=>BA//DC(so le trong)

cho mk xin **** nah

23 tháng 8 2023

Sai đề rồi em!

23 tháng 8 2023

em cx nghĩ ns sai đề nhx mà hỏi lại cô thì cô vẫn ns đề đúng 

 

20 tháng 7 2023

A B C D M H

a/

AB = AC => tg ABC cân tại A \(\Rightarrow\widehat{ACB}=\widehat{ABC}\) 

Xét tg ABC có

\(\widehat{DAB}=\widehat{ABC}+\widehat{ACB}\) (trong tg số đo góc ngoài bằng tổng số đo hai góc trong khồng kề với nó)

\(\Rightarrow\widehat{DAB}=\widehat{ACB}+\widehat{ACB}=2\widehat{ACB}\)

b/

AC = AD (gt); MD = MB (gt) => MA là đường trung bình của tg DBC

=> MA//BC

c/

\(AH\perp BC\) (gt); tg ABC cân tại A (cmt) => HB = HC (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)

AC = AD (gt)

=> HA là đường trung bình của tg DBC => AH//BD

 

 

18 tháng 8 2023

giúp mình với 

 

6 tháng 7 2019

A B C E M

Cm: a) Xét t/giác AMB và t/giác CME

có: AM = MC (gt)

  BM = ME (gt)

  \(\widehat{AMB}=\widehat{CME}\)(đối đỉnh)

=> t/giác AMB = t/giác CME (c.g.c)

b) Ta có: AB < BC (cgv < ch)

Mà AB = CE (vì t/giác AMB = t/giác CME)

=> CE < BC

c) Ta có: CE < BC (cmt)

=> \(\widehat{MBC}< \widehat{MEC}\) (quan hệ giữa góc và cạnh đối diện)

Mà \(\widehat{MEC}=\widehat{ABM}\) (vì t/giác AMB = t/giác CME)

=> \(\widehat{ABM}>\widehat{MBC}\)

d) Xét t/giác AME và t/giác CMB

có: AM = MC (gt)

  ME = MB (gt)

  \(\widehat{AME}=\widehat{CMB}\)(đối đỉnh)

=> t/giác AME = t/giác CMB (c.g.c)

=> \(\widehat{CBM}=\widehat{MEA}\) (2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AE // BC (Đpcm)

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

20 tháng 9 2015

a) Ap dung linh li pytago vao tam giac vuong ABC ta dc:

AB^2 + AC^2= BC^2

<=> 3^2+ 4^2=BC^2

<=>25=BC^2

<=> BC= 5 (cm)

b) Do AM la trung tuyen cua tam giac ABC nen: M la trung diem cua BC

Ta co: tam giac BAM = tam giac CDM (tu cm nha , c.g.c)

 => AB = CD

=> goc BAM = goc CDM

Ma 2 goc tren o vi tri so le trong nen AB // CD

c) Do AB//CD nen goc BAC = goc DCA (trong cung phia, tinh phep tinh ra nha)

Ta co: tam giac ABC = tam giac CDA (c.g.v-c.g.v, tu CM nha)

     => goc ACB = goc CAM

   Do AB // CD (cmt), goc BAC= goc ACD= 90 do (cmt)

  => ABDC la hinh thang can

 => BC = AD

  => 1/2 BC = 1/2 AD

 => BM=AM

=> tam giac BAM, tam giac  CDM can lan luot o M, M

 => goc BAM = goc ABM

 Xet tam giac ABC co AB< AC nen goc ACB < goc ABC

Ma goc ACB = goc CAM, goc BAM = goc ABM nen goc BAM> goc CAM

_______________xong r ! chuc bn hoc tot ^^_____________

13 tháng 9 2017

Bạn có thể vẽ hình được ko?