Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
DE và CA cùng vuông góc với AB, do đó
DE // AC.
Theo định lí Ta-lét, ta có:
Tương tự, ta có: DF // AB, do đó:
Cộng các vế tương ứng của (1) và (2), ta có:
Tổng không thay đổi vì luôn có giá trị bằng 1.
Vậy : Khi độ dài cạnh góc vuông AB, AC của tam giác vuông ABC thay đổi thì tổng luôn luôn không thay đổi. Tổng đó luôn có giá trị bằng 1.
a) * Chứng minh EA.EB = ED.EC
- Chứng minh Δ EBD đồng dạng với Δ ECA (gg)
- Từ đó suy ra EB/EC = ED/EA → EA.EB = ED.EC
* Chứng minh góc EAD = góc ECB
- Chứng minh Δ EAD đồng dạng với Δ ECB (cgc)
- Suy ra góc EAD = góc ECB
b) - Từ góc BMC = 120o → góc AMB = 60o → góc ABM = 30o
- Xét Δ EDB vuông tại D có góc B = 30o
→ ED = 1/2 EB
- Lý luận cho SEAD/SECB = (ED/EB)2 từ đó SECB = 144 cm2
c) - Chứng minh BMI đồng dạng với Δ BCD (gg)
- Chứng minh CM.CA = CI.BC
- Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi
Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2
d) - Chứng minh Δ BHD đồng dạng với Δ DHC (gg)
→ BH/DH = BD/DC → 2BP/2DQ = BD/DC → BP/DQ = BD/DC
- Chứng minh Δ DPB đồng dạng với Δ CQD (cgc)
→ góc BDP = góc DCQ mà góc BDP + góc PDC = 900 → CQ ⊥ P