Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé,khua ròi,không muốn mày mò,giờ mới rảnh nên dạo 1 vòng quanh olm :D
a
Xét \(\Delta\)BHO và \(\Delta\)CAO có:^O chung;^OAC=^OHB=900 => \(\Delta\)BHO ~ \(\Delta\)CAO ( g.g )
\(\Rightarrow\frac{HO}{AO}=\frac{OB}{OC}\Rightarrow\frac{OH}{OB}=\frac{AO}{OC}\)
Xét \(\Delta\)OAH và \(\Delta\)OCB có:^O chung;\(\frac{OH}{OB}=\frac{AO}{OC}\) => \(\Delta\)OAH ~ \(\Delta\)OCB ( g.g )
=> ^OHA=^OBC không đổi
b
tui có làm ở đây Câu hỏi của Hoàng Thanh - Toán lớp 8 - Học toán với OnlineMath
\(BM\cdot BH+CM\cdot CA=BC^2\) không đổi nha !!!
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
a: Xét ΔAHC vuông tại H và ΔBHA vuông tại H có
góc HAC=góc HBA
=>ΔAHC đồng dạng với ΔBHA
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC
Sửa đề: HM vuông góc với AB
a)
Sửa đề: Chứng minh \(AM\cdot AB=AN\cdot AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)(đpcm)