Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình chữ nhật ABCD có BD=36,5cm và \(\frac{AB}{BC}\)=2,4. Khi đó chu vi hình chữ nhật ABCD bằng:
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
Suy ra: AD=MN
b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ
nên AMHD là tứ giác nội tiếp
=>A,M,H,D cùng thuộc 1 đường tròn (1)
Xét tứ giác AMDN có góc AMD+góc AND=180 độ
nên AMDN là tứ giác nội tiếp
=>A,M,D,N cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn
=>AMHN là tứ giác nội tiếp
=>góc AHM=90 độ
Bài 1)
a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)
Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật
b) Câu này không đúng rồi bạn
Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân
Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)
c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông
\(AB^2=BC.BH=13.4\)
\(\Rightarrow AB=2\sqrt{13}\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)
Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)
Bài 2)
a) \(ED=AD-AE=17-8=9\)
Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy
\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)
Vậy \(\Delta ABE~\Delta DEC\)
b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)
c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông
Nên BK = AD và AB = DK
\(\Rightarrow KC=DC-DK=12-6=6\)
Theo định lý Pytago ta có
\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)
Xét ΔABC có MN//BC, theo đ/lí Ta-lét có \(\frac{AM}{MB}=\frac{AN}{NC}=\frac{12}{6}=2\)
=> MB = \(\frac{AM}{2}=\frac{10}{2}=5\left(cm\right)\) => AB = AM+MB = 10 + 5 = 15 (cm)
=> AC = AN + NC = 12+6 = 18 (cm)
Xét ΔABC vuông tại B, theo đ/lí Pytago có:
BC2=AC2 - AB2 =182 - 152 = 99 => BC=\(\sqrt{99}cm=3\sqrt{11}cm\)
Xét ΔABC có MN//BC => \(\frac{MN}{BC}=\frac{AM}{AB}=\frac{10}{15}=\frac{2}{3}\) (hệ quả đ/lí Ta-lét)
=> MN=\(\frac{2}{3}\)BC=\(\frac{2}{3}\).3\(\sqrt{11}\)= 2\(\sqrt{11}\) (cm)
Xét ht MNBC có \(\widehat{B}=90^o\) => MNBC là ht vuông
=> SMNBC = \(\frac{\left(MN+BC\right).MB}{2}=\frac{\left(2\sqrt{11}+3\sqrt{11}\right).5}{2}=\frac{25\sqrt{11}}{2}\) (cm2)
hình đây